a2 United States Patent

Nachimuthu et al.

US009269438B2

US 9,269,438 B2
Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)
(86)

87

(65)

(1)

(52)

(58)

SYSTEM AND METHOD FOR
INTELLIGENTLY FLUSHING DATA FROM A
PROCESSOR INTO A MEMORY SUBSYSTEM

Inventors: Murugasamy K Nachimuthu,
Beaverton, OR (US); Mohan J Kumar,
Aloha, OR (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 4 days.

Appl. No.: 13/994,723

PCT Filed: Dec. 21,2011

PCT No.: PCT/US2011/066492

§371 (D),

(2), (4) Date:  Oect. 21,2013

PCT Pub. No.. WO02013/095437
PCT Pub. Date: Jun. 27,2013

Prior Publication Data

US 2014/0297919 Al Oct. 2, 2014

Int. Cl1.

G11C 1400 (2006.01)

GO6F 9/30 (2006.01)

GO6F 12/08 (2006.01)

G11C 13/00 (2006.01)

U.S. CL

CPC ... G11C 14/009 (2013.01); GO6F 12/0891

(2013.01); GOGF 9/30047 (2013.01); GO6F
12/0804 (2013.01); GO6F 12/0868 (2013.01);
G11C 13/0004 (2013.01)
Field of Classification Search
CPC ........... GOGF 9/30047, GOGF 12/0804; GOGF
12/0868; GOGF 12/0891
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,752,173 B1* 72010 Gole ..o 707/654
2006/0143397 Al* 6/2006 O’Blenessetal. .. . 711/135
2009/0222627 Al*  9/2009 Reid ............ . 711/135
2010/0185820 Al 7/2010 Hughes et al.

2011/0107049 Al* 5/2011 Kwonetal. .............. 711/165
OTHER PUBLICATIONS

PCT/US2011/066492 Notification Concerning Transmittal of Inter-
national Preliminary Report on Patentability, mailed Jul. 3, 2014, 8
pages.

PCT/US2011/066492 Notification of Transmittal of the International
Search Report and the Written Opinion of the International Searching
Authority, or the Declaration, Mailed Jul. 24, 2012, 11 pages.

* cited by examiner

Primary Examiner — Ryan Bertram
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

A system and method are described for intelligently flushing
data from a processor cache. For example, a system according
to one embodiment of the invention comprises: a processor
having a cache from which data is flushed, the data associated
with a particular system address range; and a PCM memory
controller for managing access to data stored in a PCM
memory device corresponding to the particular system
address range; the processor determining whether memory
flush hints are enabled for the specified system address range,
wherein if memory flush hints are enabled for the specified
system address range then the processor sending a memory
flush hint to a PCM memory controller of the PCM memory
device and wherein the PCM memory controller uses the
memory flush hint to determine whether to save the flushed
data to the PCM memory device.
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SYSTEM AND METHOD FOR
INTELLIGENTLY FLUSHING DATA FROM A
PROCESSOR INTO A MEMORY SUBSYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2011/066492, filed Dec. 21, 2011, entitled SYSTEM
AND METHOD FOR INTELLIGENTLY FLUSHING
DATA FROM A PROCESSOR INTO A MEMORY SUB-
SYSTEM.

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of computer
systems. More particularly, the invention relates to an appa-
ratus and method for implementing a multi-level memory
hierarchy.

2. Description of the Related Art

A. Current Memory and Storage Configurations

One of the limiting factors for computer innovation today
is memory and storage technology. In conventional computer
systems, system memory (also known as main memory, pri-
mary memory, executable memory) is typically implemented
by dynamic random access memory (DRAM). DRAM-based
memory consumes power even when no memory reads or
writes occur because it must constantly recharge internal
capacitors. DRAM-based memory is volatile, which means
data stored in DRAM memory is lost once the power is
removed. Conventional computer systems also rely on mul-
tiple levels of caching to improve performance. A cache is a
high speed memory positioned between the processor and
system memory to service memory access requests faster
than they could be serviced from system memory. Such
caches are typically implemented with static random access
memory (SRAM). Cache management protocols may be used
to ensure that the most frequently accessed data and instruc-
tions are stored within one of the levels of cache, thereby
reducing the number of memory access transactions and
improving performance.

With respect to mass storage (also known as secondary
storage or disk storage), conventional mass storage devices
typically include magnetic media (e.g., hard disk drives),
optical media (e.g., compact disc (CD) drive, digital versatile
disc (DVD), etc.), holographic media, and/or mass-storage
flash memory (e.g., solid state drives (SSDs), removable flash
drives, etc.). Generally, these storage devices are considered
Input/Output (I/O) devices because they are accessed by the
processor through various I/O adapters that implement vari-
ous I/O protocols. These I/O adapters and 1/O protocols con-
sume a significant amount of power and can have a significant
impact on the die area and the form factor of the platform.
Portable or mobile devices (e.g., laptops, netbooks, tablet
computers, personal digital assistant (PDAs), portable media
players, portable gaming devices, digital cameras, mobile
phones, smartphones, feature phones, etc.) that have limited
battery life when not connected to a permanent power supply
may include removable mass storage devices (e.g., Embed-
ded Multimedia Card (eMMC), Secure Digital (SD) card)
that are typically coupled to the processor via low-power
interconnects and 1/O controllers in order to meet active and
idle power budgets.

With respect to firmware memory (such as boot memory
(also known as BIOS flash)), a conventional computer system
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typically uses flash memory devices to store persistent system
information that is read often but seldom (or never) written to.
For example, the initial instructions executed by a processor
to initialize key system components during a boot process
(Basic Input and Output System (BIOS) images) are typically
stored in a flash memory device. Flash memory devices that
are currently available in the market generally have limited
speed (e.g., 50 MHz). This speed is further reduced by the
overhead for read protocols (e.g., 2.5 MHz). In order to speed
up the BIOS execution speed, conventional processors gen-
erally cache a portion of BIOS code during the Pre-Extensible
Firmware Interface (PEI) phase of the boot process. The size
of the processor cache places a restriction on the size of the
BIOS code used in the PEI phase (also known as the “PEI
BIOS code”).

B. Phase-Change Memory (PCM) and Related Technolo-
gies

Phase-change memory (PCM), also sometimes referred to
as phase change random access memory (PRAM or
PCRAM), PCME, Ovonic Unified Memory, or Chalcogenide
RAM (C-RAM), is a type of non-volatile computer memory
which exploits the unique behavior of chalcogenide glass. As
aresult of heat produced by the passage of an electric current,
chalcogenide glass can be switched between two states: crys-
talline and amorphous. Recent versions of PCM can achieve
two additional distinct states.

PCM provides higher performance than flash because the
memory element of PCM can be switched more quickly,
writing (changing individual bits to either 1 or 0) can be done
without the need to first erase an entire block of cells, and
degradation from writes is slower (a PCM device may survive
approximately 100 million write cycles; PCM degradation is
due to thermal expansion during programming, metal (and
other material) migration, and other mechanisms).

BRIEF DESCRIPTION OF THE DRAWINGS

The following description and accompanying drawings are
used to illustrate embodiments of the invention. In the draw-
ings:

FIG. 1 illustrates a cache and system memory arrangement
according to embodiments of the invention;

FIG. 2 illustrates a memory and storage hierarchy
employed in embodiments of the invention;

FIG. 3 illustrates a computer system on which embodi-
ments of the invention may be implemented;

FIG. 4A illustrates a first system architecture which
includes PCM according to embodiments of the invention;

FIG. 4B illustrates a second system architecture which
includes PCM according to embodiments of the invention;

FIG. 4C illustrates a third system architecture which
includes PCM according to embodiments of the invention;

FIG. 4D illustrates a fourth system architecture which
includes PCM according to embodiments of the invention;

FIG. 4E illustrate a fifth system architecture which
includes PCM according to embodiments of the invention;

FIG. 4F illustrate a sixth system architecture which
includes PCM according to embodiments of the invention;

FIG. 4G illustrates a seventh system architecture which
includes PCM according to embodiments of the invention;

FIG. 4H illustrates an eight system architecture which
includes PCM according to embodiments of the invention;

FIG. 41 illustrates a ninth system architecture which
includes PCM according to embodiments of the invention;

FIG. 4] illustrates a tenth system architecture which
includes PCM according to embodiments of the invention;
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FIG. 4K illustrates an eleventh system architecture which
includes PCM according to embodiments of the invention;

FIG. 4L illustrates a twelfth system architecture which
includes PCM according to embodiments of the invention;
and

FIG. 4M illustrates a thirteenth system architecture which
includes PCM according to embodiments of the invention.

FIG. 5A illustrates one embodiment of a system architec-
ture which includes a volatile near memory and a non-volatile
far memory;

FIG. 5B illustrates one embodiment of a memory side
cache (MSC);

FIG. 5C illustrates another embodiment of a memory side
cache (MSC) which includes an integrated tag cache and ECC
generation/check logic;

FIG. 5D illustrates one embodiment of an exemplary tag
cache and ECC generator/check unit;

FIG. 5E illustrates one embodiment of a PCM DIMM
including a PCM controller;

FIG. 6A illustrates MCE controllers and caches dedicated
to certain specified system physical address (SPA) ranges
according to one embodiment of the invention;

FIG. 6B illustrates an exemplary mapping between a sys-
tem memory map, a near memory address map and a PCM
address map according to one embodiment of the invention;

FIG. 6C illustrates an exemplary mapping between a sys-
tem physical address (SPA) and a PCM physical device
address (PDA) or a near memory address (NMA) according
to one embodiment of the invention;

FIG. 6D illustrates interleaving between memory pages
within a system physical address (SPA) space and memory
channel address (MCA) space according to one embodiment
of the invention;

FIG. 7 illustrates an exemplary multi-processor architec-
ture on which embodiments of the invention may be imple-
mented.

FIG. 8 illustrates a system memory map in accordance with
some embodiments of the invention.

FIG. 9 illustrates one embodiment of a memory range
register (MRR) containing flush hint data.

FIG. 10 illustrates one embodiment of a PCMS memory
controller.

FIG. 11 illustrates one embodiment of a method for intel-
ligently flushing data to a PCMS device.

FIG. 12 illustrates a method according to one embodiment
of the invention.

DETAILED DESCRIPTION

In the following description, numerous specific details
such as logic implementations, opcodes, means to specity
operands, resource partitioning/sharing/duplication imple-
mentations, types and interrelationships of system compo-
nents, and logic partitioning/integration choices are set forth
in order to provide a more thorough understanding of the
present invention. It will be appreciated, however, by one
skilled in the art that the invention may be practiced without
such specific details. In other instances, control structures,
gate level circuits and full software instruction sequences
have not been shown in detail in order not to obscure the
invention. Those of ordinary skill in the art, with the included
descriptions, will be able to implement appropriate function-
ality without undue experimentation.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
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necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to effect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives, may
be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” is used to
indicate that two or more elements, which may or may not be
in direct physical or electrical contact with each other, co-
operate or interact with each other. “Connected” is used to
indicate the establishment of communication between two or
more elements that are coupled with each other.

Bracketed text and blocks with dashed borders (e.g., large
dashes, small dashes, dot-dash, dots) are sometimes used
herein to illustrate optional operations/components that add
additional features to embodiments of the invention. How-
ever, such notation should not be taken to mean that these are
the only options or optional operations/components, and/or
that blocks with solid borders are not optional in certain
embodiments of the invention.

Introduction

Memory capacity and performance requirements continue
to increase with an increasing number of processor cores and
new usage models such as virtualization. In addition, memory
power and cost have become a significant component of the
overall power and cost, respectively, of electronic systems.

Some embodiments of the invention solve the above chal-
lenges by intelligently subdividing the performance require-
ment and the capacity requirement between memory tech-
nologies. The focus of this approach is on providing
performance with a relatively small amount of a relatively
higher-speed memory such as DRAM while implementing
the bulk of the system memory using significantly cheaper
and denser non-volatile random access memory (NVRAM).
Embodiments of the invention described below define plat-
form configurations that enable hierarchical memory sub-
system organizations for the use of NVRAM. The use of
NVRAM in the memory hierarchy also enables new usages
such as expanded boot space and mass storage implementa-
tions, as described in detail below.

FIG. 1 illustrates a cache and system memory arrangement
according to embodiments of the invention. Specifically, FIG.
1 shows a memory hierarchy including a set of internal pro-
cessor caches 120, “near memory” acting as a far memory
cache 121, which may include both internal cache(s) 106 and
external caches 107-109, and “far memory” 122. One particu-
lar type of memory which may be used for “far memory” in
some embodiments of the invention is non-volatile random
access memory (“NVRAM”). As such, an overview of
NVRAM is provided below, followed by an overview of far
memory and near memory.

A. Non-Volatile Random Access Memory (“NVRAM”)

There are many possible technology choices for NVRAM,
including PCM, Phase Change Memory and Switch (PCMS)
(the latter being a more specific implementation of the
former), byte-addressable persistent memory (BPRAM), uni-
versal memory, Ge2Sb2TeS5, programmable metallization
cell (PMC), resistive memory (RRAM), RESET (amor-
phous) cell, SET (crystalline) cell, PCME, Ovshinsky
memory, ferroelectric memory (also known as polymer
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memory and poly(N-vinylcarbazole)), ferromagnetic
memory (also known as Spintronics, SPRAM (spin-transfer
torque RAM), STRAM (spin tunneling RAM), magnetore-
sistive memory, magnetic memory, magnetic random access
memory (MRAM)), and Semiconductor-oxide-nitride-ox-
ide-semiconductor (SONOS, also known as dielectric
memory).

For use in the memory hierarchy described in this applica-
tion, NVRAM has the following characteristics:

(1) It maintains its content even if power is removed, simi-
lar to FLASH memory used in solid state disks (SSD), and
different from SRAM and DRAM which are volatile;

(2) lower power consumption when idle than volatile
memories such as SRAM and DRAM;

(3) random access similar to SRAM and DRAM (also
known as randomly addressable);

(4) rewritable and erasable at a lower level of granularity
(e.g., bytelevel) than FLLASH found in SSDs (which can only
be rewritten and erased a “block™ at a time—minimally 64
Kbyte in size for NOR FLASH and 16 Kbyte for NAND
FLASH);

(5) usable as a system memory and allocated all or a portion
of the system memory address space;

(6) capable of being coupled to the processor over a bus
using a transactional protocol (a protocol that supports trans-
action identifiers (IDs) to distinguish different transactions so
that those transactions can complete out-of-order) and allow-
ing access at a level of granularity small enough to support
operation of the NVRAM as system memory (e.g., cache line
size such as 64 or 128 byte). For example, the bus may be a
memory bus (e.g., a DDR bus such as DDR3, DDRA4, etc.)
over which is run a transactional protocol as opposed to the
non-transactional protocol that is normally used. As another
example, the bus may one over which is normally run a
transactional protocol (a native transactional protocol), such
as a PCI express (PCIE) bus, desktop management interface
(DMI) bus, or any other type of bus utilizing a transactional
protocol and a small enough transaction payload size (e.g.,
cache line size such as 64 or 128 byte); and

(7) one or more of the following:

a) faster write speed than non-volatile memory/storage

technologies such as FLASH;

b) very high read speed (faster than FLASH and near or

equivalent to DRAM read speeds);

¢) directly writable (rather than requiring erasing (over-

writing with 1s) before writing data like FLASH
memory used in SSDs); and/or

d) orders of magnitude (e.g., 2 or 3) higher write endurance

before failure (more than boot ROM and FLASH used in
SSDs).

As mentioned above, in contrastto FLASH memory, which
must be rewritten and erased a complete “block” at a time, the
level of granularity at which NVRAM is accessed in any
given implementation may depend on the particular memory
controller and the particular memory bus or other type of bus
to which the NVRAM is coupled. For example, in some
implementations where NVRAM is used as system memory,
the NVRAM may be accessed at the granularity of a cache
line (e.g., a 64-byte or 128-Byte cache line), notwithstanding
an inherent ability to be accessed at the granularity of a byte,
because cache line is the level at which the memory sub-
system accesses memory. Thus, when NVRAM is deployed
within a memory subsystem, it may be accessed at the same
level of granularity as the DRAM (e.g., the “near memory™)
used in the same memory subsystem. Even so, the level of
granularity of access to the NVRAM by the memory control-
ler and memory bus or other type of bus is smaller than that of
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the block size used by Flash and the access size of the I/O
subsystem’s controller and bus.

NVRAM may also incorporate wear leveling algorithms to
account for the fact that the storage cells at the far memory
level begin to wear out after a number of write accesses,
especially where a significant number of writes may occur
such as in a system memory implementation. Since high cycle
count blocks are most likely to wear out in this manner, wear
leveling spreads writes across the far memory cells by swap-
ping addresses of high cycle count blocks with low cycle
count blocks. Note that most address swapping is typically
transparent to application programs because it is handled by
hardware, lower-level software (e.g., a low level driver or
operating system), or a combination of the two.

B. Far Memory

The far memory 122 of some embodiments of the invention
is implemented with NVRAM, but is not necessarily limited
to any particular memory technology. Far memory 122 is
distinguishable from other instruction and data memory/stor-
age technologies in terms of its characteristics and/or its
application in the memory/storage hierarchy. For example,
far memory 122 is different from:

1) static random access memory (SRAM) which may be
used for level 0 and level 1 internal processor caches
101a-b, 102a-b, 103a-b, 103a-b, and 104a-b dedicated
to each of the processor cores 101-104, respectively, and
lower level cache (LLC) 105 shared by the processor
cores;

2) dynamic random access memory (DRAM) configured
as a cache 106 internal to the processor 100 (e.g., on the
same die as the processor 100) and/or configured as one
or more caches 107-109 external to the processor (e.g.,
in the same or a different package from the processor
100); and

3) FLASH memory/magnetic disk/optical disc applied as
mass storage (not shown); and

4) memory such as FLASH memory or other read only
memory (ROM) applied as firmware memory (which
can refer to boot ROM, BIOS Flash, and/or TPM Flash).
(not shown).

Far memory 122 may be used as instruction and data stor-
age that is directly addressable by a processor 100 and is able
to sufficiently keep pace with the processor 100 in contrast to
FLASH/magnetic disk/optical disc applied as mass storage.
Moreover, as discussed above and described in detail below,
far memory 122 may be placed on a memory bus and may
communicate directly with a memory controller that, in turn,
communicates directly with the processor 100.

Far memory 122 may be combined with other instruction
and data storage technologies (e.g., DRAM) to form hybrid
memories (also known as Co-locating PCM and DRAM,; first
level memory and second level memory; FLLAM (FLASH and
DRAM)). Note that at least some of the above technologies,
including PCM/PCMS may be used for mass storage instead
of, or in addition to, system memory, and need not be random
accessible, byte addressable or directly addressable by the
processor when applied in this manner.

For convenience of explanation, most of the remainder of
the application will refer to “NVRAM” or, more specifically,
“PCM,” or “PCMS” as the technology selection for the far
memory 122. As such, the terms NVRAM, PCM, PCMS, and
far memory may be used interchangeably in the following
discussion. However it should be realized, as discussed
above, that different technologies may also be utilized for far
memory. Also, that NVRAM is not limited for use as far
memory.
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C. Near Memory

“Near memory” 121 is an intermediate level of memory
configured in front of a far memory 122 that has lower read/
write access latency relative to far memory and/or more sym-
metric read/write access latency (i.e., having read times
which are roughly equivalent to write times). In some
embodiments, the near memory 121 has significantly lower
write latency than the far memory 122 but similar (e.g.,
slightly lower or equal) read latency; for instance the near
memory 121 may be a volatile memory such as volatile ran-
dom access memory (VRAM) and may comprise a DRAM or
other high speed capacitor-based memory. Note, however,
that the underlying principles of the invention are not limited
to these specific memory types. Additionally, the near
memory 121 may have a relatively lower density and/or may
be more expensive to manufacture than the far memory 122.

In one embodiment, near memory 121 is configured
between the far memory 122 and the internal processor
caches 120. In some of the embodiments described below,
near memory 121 is configured as one or more memory-side
caches (MSCs) 107-109 to mask the performance and/or
usage limitations of the far memory including, for example,
read/write latency limitations and memory degradation limi-
tations. In these implementations, the combination of the
MSC 107-109 and far memory 122 operates at a performance
level which approximates, is equivalent or exceeds a system
which uses only DRAM as system memory. As discussed in
detail below, although shown as a “cache” in FIG. 1, the near
memory 121 may include modes in which it performs other
roles, either in addition to, or in lieu of, performing the role of
a cache.

Near memory 121 can be located on the processor die (as
cache(s) 106) and/or located external to the processor die (as
caches 107-109) (e.g., on a separate die located on the CPU
package, located outside the CPU package with a high band-
width link to the CPU package, for example, on a memory
dual in-line memory module (DIMM), a riser/mezzanine, or
a computer motherboard). The near memory 121 may be
coupled in communicate with the processor 100 using a
single or multiple high bandwidth links, such as DDR or other
transactional high bandwidth links (as described in detail
below).

An Exemplary System Memory Allocation Scheme

FIG. 1 illustrates how various levels of caches 101-109 are
configured with respect to a system physical address (SPA)
space 116-119 in embodiments of the invention. As men-
tioned, this embodiment comprises a processor 100 having
one or more cores 101-104, with each core having its own
dedicated upper level cache (LO) 101a-104a and mid-level
cache (MLC) (LL1) cache 1015-1045. The processor 100 also
includes a shared LLC 105. The operation of these various
cache levels are well understood and will not be described in
detail here.

The caches 107-109 illustrated in FIG. 1 may be dedicated
to a particular system memory address range or a set of
non-contiguous address ranges. For example, cache 107 is
dedicated to acting as an MSC for system memory address
range #1 116 and caches 108 and 109 are dedicated to acting
as MSCs for non-overlapping portions of system memory
address ranges #2 117 and #3 118. The latter implementation
may be used for systems in which the SPA space used by the
processor 100 is interleaved into an address space used by the
caches 107-109 (e.g., when configured as MSCs). In some
embodiments, this latter address space is referred to as a
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memory channel address (MCA) space. In one embodiment,
the internal caches 101a-106 perform caching operations for
the entire SPA space.

System memory as used herein is memory which is visible
to and/or directly addressable by software executed on the
processor 100; while the cache memories 101a-109 may
operate transparently to the software in the sense that they do
not form a directly-addressable portion of the system address
space, but the cores may also support execution of instruc-
tions to allow software to provide some control (configura-
tion, policies, hints, etc.) to some or all of the cache(s). The
subdivision of system memory into regions 116-119 may be
performed manually as part of a system configuration process
(e.g., by a system designer) and/or may be performed auto-
matically by software.

In one embodiment, the system memory regions 116-119
are implemented using far memory (e.g., PCM) and, in some
embodiments, near memory configured as system memory.
System memory address range #4 represents an address range
which is implemented using a higher speed memory such as
DRAM which may be a near memory configured in a system
memory mode (as opposed to a caching mode).

FIG. 2 illustrates a memory/storage hierarchy 140 and
different configurable modes of operation for near memory
144 and NVRAM according to embodiments of the invention.
The memory/storage hierarchy 140 has multiple levels
including (1) a cache level 150 which may include processor
caches 150A (e.g., caches 101A-105in FIG. 1) and optionally
near memory as cache for far memory 150B (in certain modes
of operation as described herein), (2) a system memory level
151 which may include far memory 151B (e.g., NVRAM
such as PCM) when near memory is present (or just NVRAM
as system memory 174 when near memory is not present),
and optionally near memory operating as system memory
151A (in certain modes of operation as described herein), (3)
amass storage level 152 which may include a flash/magnetic/
optical mass storage 152B and/or NVRAM mass storage
152A (e.g., aportion of the NVRAM 142); and (4) a firmware
memory level 153 that may include BIOS flash 170 and/or
BIOS NVRAM 172 and optionally trusted platform module
(TPM) NVRAM 173.

As indicated, near memory 144 may be implemented to
operate in a variety of different modes including: a first mode
in which it operates as a cache for far memory (near memory
as cache for FM 150B); a second mode in which it operates as
system memory 151A and occupies a portion of the SPA
space (sometimes referred to as near memory “direct access”
mode); and one or more additional modes of operation such as
a scratchpad memory 192 or as a write buffer 193. In some
embodiments of the invention, the near memory is partition-
able, where each partition may concurrently operate in a
different one of the supported modes; and different embodi-
ments may support configuration of the partitions (e.g., sizes,
modes) by hardware (e.g., fuses, pins), firmware, and/or soft-
ware (e.g., through a set of programmable range registers
within the MSC controller 124 within which, for example,
may be stored different binary codes to identify each mode
and partition).

System address space A 190 in FIG. 2 is used to illustrate
operation when near memory is configured as a MSC for far
memory 150B. In this configuration, system address space A
190 represents the entire system address space (and system
address space B 191 does not exist). Alternatively, system
address space B 191 is used to show an implementation when
all or a portion of near memory is assigned a portion of the
system address space. In this embodiment, system address
space B 191 represents the range of the system address space
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assigned to the near memory 151A and system address space
A 190 represents the range of the system address space
assigned to NVRAM 174.

In addition, when acting as a cache for far memory 150B,
the near memory 144 may operate in various sub-modes
under the control of the MSC controller 124. In each of these
modes, the near memory address space (NMA) is transparent
to software in the sense that the near memory does not form a
directly-addressable portion of the system address space.
These modes include but are not limited to the following:

(1) Write-Back Caching Mode:

In this mode, all or portions of the near memory acting as a
FM cache 150B is used as a cache for the NVRAM far
memory (FM) 151B. While in write-back mode, every write
operation is directed initially to the near memory as cache for
FM 150B (assuming that the cache line to which the write is
directed is present in the cache). A corresponding write opera-
tion is performed to update the NVRAM FM 151B only when
the cache line within the near memory as cache for FM 150B
is to be replaced by another cache line (in contrast to write-
through mode described below in which each write operation
is immediately propagated to the NVRAM FM 151B).

(2) Near Memory Bypass Mode:

In this mode all reads and writes bypass the NM acting as
a FM cache 150B and go directly to the NVRAM FM 151B.
Such a mode may be used, for example, when an application
is not cache friendly or requires data to be committed to
persistence at the granularity of a cache line. In one embodi-
ment, the caching performed by the processor caches 150A
and the NM acting as a FM cache 150B operate independently
of'one another. Consequently, data may be cached in the NM
acting as a FM cache 150B which is not cached in the pro-
cessor caches 150A (and which, in some cases, may not be
permitted to be cached in the processor caches 150A) and vice
versa. Thus, certain data which may be designated as
“uncacheable” in the processor caches may be cached within
the NM acting as a FM cache 150B.

(3) Near Memory Read-Cache Write Bypass Mode:

This is a variation of the above mode where read caching of
the persistent data from NVRAM FM 151B is allowed (i.e.,
the persistent data is cached in the near memory as cache for
far memory 150B for read-only operations). This is useful
when most of the persistent data is “Read-Only” and the
application usage is cache-friendly.

(4) Near Memory Read-Cache Write-Through Mode:

This is a variation of the near memory read-cache write
bypass mode, where in addition to read caching, write-hits are
also cached. Every write to the near memory as cache for FM
1508 causes a write to the FM 151B. Thus, due to the write-
through nature of the cache, cache-line persistence is still
guaranteed.

When acting in near memory direct access mode, all or
portions of the near memory as system memory 151A are
directly visible to software and form part of the SPA space.
Such memory may be completely under software control.
Such a scheme may create a non-uniform memory address
(NUMA) memory domain for software where it gets higher
performance from near memory 144 relative to NVRAM
system memory 174. By way of example, and not limitation,
such a usage may be employed for certain high performance
computing (HPC) and graphics applications which require
very fast access to certain data structures.

In an alternate embodiment, the near memory direct access
mode is implemented by “pinning” certain cache lines in near
memory (i.e., cache lines which have data that is also concur-
rently stored in NVRAM 142). Such pinning may be done
effectively in larger, multi-way, set-associative caches.
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FIG. 2 also illustrates that a portion of the NVRAM 142
may be used as firmware memory. For example, the BIOS
NVRAM 172 portion may be used to store BIOS images
(instead of or in addition to storing the BIOS information in
BIOS flash 170). The BIOS NVRAM portion 172 may be a
portion of the SPA space and is directly addressable by soft-
ware executed on the processor cores 101-104, whereas the
BIOS flash 170 is addressable through the I/O subsystem 115.
As another example, a trusted platform module (TPM)
NVRAM 173 portion may be used to protect sensitive system
information (e.g., encryption keys).

Thus, as indicated, the NVRAM 142 may be implemented
to operate in a variety of different modes, including as far
memory 151B (e.g., when near memory 144 is present/oper-
ating, whether the near memory is acting as a cache for the
FM via a MSC control 124 or not (accessed directly after
cache(s) 101A-105 and without MSC control 124)); just
NVRAM system memory 174 (not as far memory because
there is no near memory present/operating; and accessed
without MSC control 124); NVRAM mass storage 152A;
BIOS NVRAM 172; and TPM NVRAM 173. While different
embodiments may specify the NVRAM modes in different
ways, FIG. 3 describes the use of a decode table 333.

FIG. 3 illustrates an exemplary computer system 300 on
which embodiments of the invention may be implemented.
The computer system 300 includes a processor 310 and
memory/storage subsystem 380 with a NVRAM 142 used for
both system memory, mass storage, and optionally firmware
memory. In one embodiment, the NVRAM 142 comprises the
entire system memory and storage hierarchy used by com-
puter system 300 for storing data, instructions, states, and
other persistent and non-persistent information. As previ-
ously discussed, NVRAM 142 can be configured to imple-
ment the roles in a typical memory and storage hierarchy of
system memory, mass storage, and firmware memory, TPM
memory, and the like. In the embodiment of FIG. 3, NVRAM
142 is partitioned into FM 151B, NVRAM mass storage
152A, BIOS NVRAM 173, and TMP NVRAM 173. Storage
hierarchies with different roles are also contemplated and the
application of NVRAM 142 is not limited to the roles
described above.

By way of example, operation while the near memory as
cache for FM 150B is in the write-back caching is described.
In one embodiment, while the near memory as cache for FM
1508 is in the write-back caching mode mentioned above, a
read operation will first arrive at the MSC controller 124
which will perform a look-up to determine if the requested
data is present in the near memory acting as a cache for FM
1508 (e.g., utilizing a tag cache 342). If present, it will return
the data to the requesting CPU, core 101-104 or 1/O device
through I/O subsystem 115. Ifthe data is not present, the MSC
controller 124 will send the request along with the system
memory address to an NVRAM controller 332. The NVRAM
controller 332 will use the decode table 333 to translate the
system memory address to an NVRAM physical device
address (PDA) and direct the read operation to this region of
the far memory 151B. In one embodiment, the decode table
333 includes an address indirection table (AIT) component
which the NVRAM controller 332 uses to translate between
system memory addresses and NVRAM PDAs. In one
embodiment, the AIT is updated as part of the wear leveling
algorithm implemented to distribute memory access opera-
tions and thereby reduce wear on the NVRAM FM 151B.
Alternatively, the AIT may be a separate table stored within
the NVRAM controller 332.

Upon receiving the requested data from the NVRAM FM
151B, the NVRAM controller 332 will return the requested
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data to the MSC controller 124 which will store the data in the
MSC near memory acting as an FM cache 150B and also send
the data to the requesting processor core 101-104, or I/O
Device through 1/O subsystem 115. Subsequent requests for
this data may be serviced directly from the near memory
acting as a FM cache 150B until it is replaced by some other
NVRAM FM data.

As mentioned, in one embodiment, a memory write opera-
tion also first goes to the MSC controller 124 which writes it
into the MSC near memory acting as a FM cache 150B. In
write-back caching mode, the data may not be sent directly to
the NVRAM FM 151B when a write operation is received.
For example, the data may be sent to the NVRAM FM 151B
only when the location in the MSC near memory acting as a
FM cache 150B in which the data is stored must be re-used for
storing data for a different system memory address. When this
happens, the MSC controller 124 notices that the data is not
current in NVRAM FM 151B and will thus retrieve it from
near memory acting as a FM cache 150B and send it to the
NVRAM controller 332. The NVRAM controller 332 looks
up the PDA for the system memory address and then writes
the data to the NVRAM FM 151B.

In FIG. 3, the NVRAM controller 332 is shown connected
to the FM 151B, NVRAM mass storage 152A, and BIOS
NVRAM 172 using three separate lines. This does not nec-
essarily mean, however, that there are three separate physical
buses or communication channels connecting the NVRAM
controller 332 to these portions of the NVRAM 142. Rather,
in some embodiments, a common memory bus or other type
of bus (such as those described below with respect to FIGS.
4A-M) is used to communicatively couple the NVRAM con-
troller 332 to the FM 151B, NVRAM mass storage 152 A, and
BIOS NVRAM 172. For example, in one embodiment, the
three lines in FIG. 3 represent a bus, such as a memory bus
(e.g., a DDR3, DDRA4, etc, bus), over which the NVRAM
controller 332 implements a transactional protocol to com-
municate withthe NVRAM 142. The NVRAM controller 332
may also communicate with the NVRAM 142 over a bus
supporting a native transactional protocol such as a PCI
express bus, desktop management interface (DMI) bus, or any
other type of bus utilizing a transactional protocol and a small
enough transaction payload size (e.g., cache line size such as
64 or 128 byte).

In one embodiment, computer system 300 includes inte-
grated memory controller (IMC) 331 which performs the
central memory access control for processor 310, which is
coupled to: 1) a memory-side cache (MSC) controller 124 to
control access to near memory (NM) acting as a far memory
cache 150B; and 2) a NVRAM controller 332 to control
access to NVRAM 142. Although illustrated as separate units
in FIG. 3, the MSC controller 124 and NVRAM controller
332 may logically form part of the IMC 331.

In the illustrated embodiment, the MSC controller 124
includes a set of range registers 336 which specify the mode
of operation in use for the NM acting as a far memory cache
150B (e.g., write-back caching mode, near memory bypass
mode, etc, described above). In the illustrated embodiment,
DRAM 144 is used as the memory technology for the NM
acting as cache for far memory 150B. In response to a
memory access request, the MSC controller 124 may deter-
mine (depending on the mode of operation specified in the
range registers 336) whether the request can be serviced from
the NM acting as cache for FM 150B or whether the request
must be sent to the NVRAM controller 332, which may then
service the request from the far memory (FM) portion 151B
of the NVRAM 142.
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In an embodiment where NVRAM 142 is implemented
with PCMS, NVRAM controller 332 is a PCMS controller
that performs access with protocols consistent with the
PCMS technology. As previously discussed, the PCMS
memory is inherently capable of being accessed at the granu-
larity of a byte. Nonetheless, the NVR AM controller 332 may
access a PCMS-based far memory 151B at a lower level of
granularity such as a cache line (e.g., a 64-bit or 128-bit cache
line) or any other level of granularity consistent with the
memory subsystem. The underlying principles of the inven-
tion are not limited to any particular level of granularity for
accessing a PCMS-based far memory 151B. In general, how-
ever, when PCMS-based far memory 151B is used to form
part of the system address space, the level of granularity will
be higher than that traditionally used for other non-volatile
storage technologies such as FLLASH, which can only per-
form rewrite and erase operations at the level of a “block”
(minimally 64 Kbyte in size for NOR FLASH and 16 Kbyte
for NAND FLASH).

In the illustrated embodiment, NVRAM controller 332 can
read configuration data to establish the previously described
modes, sizes, etc. for the NVRAM 142 from decode table
333, or alternatively, can rely on the decoding results passed
from IMC 331 and 1/O subsystem 315. For example, at either
manufacturing time or in the field, computer system 300 can
program decode table 333 to mark different regions of
NVRAM 142 as system memory, mass storage exposed via
SATA interfaces, mass storage exposed via USB Bulk Only
Transport (BOT) interfaces, encrypted storage that supports
TPM storage, among others. The means by which access is
steered to different partitions of NVRAM device 142 is viaa
decode logic. For example, in one embodiment, the address
range of each partition is defined in the decode table 333. In
one embodiment, when IMC 331 receives an access request,
the target address of the request is decoded to reveal whether
the request is directed toward memory, NVRAM mass stor-
age, or I/O. If it is a memory request, IMC 331 and/or the
MSC controller 124 further determines from the target
address whether the request is directed to NM as cache for FM
150B or to FM 151B. For FM 151B access, the request is
forwarded to NVRAM controller 332. IMC 331 passes the
request to the I/O subsystem 115 if this request is directed to
1/0 (e.g., non-storage and storage 1/O devices). [/O subsystem
115 further decodes the address to determine whether the
address points to NVRAM mass storage 152A, BIOS
NVRAM 172, or other non-storage or storage I/P devices. If
this address points to NVRAM mass storage 152A or BIOS
NVRAM 172, /O subsystem 115 forwards the request to
NVRAM controller 332. If this address points to TMP
NVRAM 173, /O subsystem 115 passes the request to TPM
334 to perform secured access.

In one embodiment, each request forwarded to NVRAM
controller 332 is accompanied with an attribute (also known
as a “transaction type”) to indicate the type of access. In one
embodiment, NVRAM controller 332 may emulate the
access protocol for the requested access type, such that the
rest of the platform remains unaware of the multiple roles
performed by NVRAM 142 in the memory and storage hier-
archy. In alternative embodiments, NVRAM controller 332
may perform memory access to NVRAM 142 regardless of
which transaction type it is. It is understood that the decode
path can be different from what is described above. For
example, IMC 331 may decode the target address of an access
request and determine whether it is directed to NVRAM 142.
If it is directed to NVRAM 142, IMC 331 generates an
attribute according to decode table 333. Based on the
attribute, IMC 331 then forwards the request to appropriate
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downstream logic (e.g., NVRAM controller 332 and 1/O sub-
system 315) to perform the requested data access. In yet
another embodiment, NVRAM controller 332 may decode
the target address if the corresponding attribute is not passed
on from the upstream logic (e.g., IMC 331 and I/O subsystem
315). Other decode paths may also be implemented.

The presence of a new memory architecture such as
described herein provides for a wealth of new possibilities.
Although discussed at much greater length further below,
some of these possibilities are quickly highlighted immedi-
ately below.

According to one possible implementation, NVRAM 142
acts as a total replacement or supplement for traditional
DRAM technology in system memory. In one embodiment,
NVRAM 142 represents the introduction of a second-level
system memory (e.g., the system memory may be viewed as
having a first level system memory comprising near memory
as cache 1508 (part of the DRAM device 340) and a second
level system memory comprising far memory (FM) 151B
(part of the NVRAM 142).

According to some embodiments, NVRAM 142 acts as a
total replacement or supplement for the flash/magnetic/opti-
cal mass storage 152B. As previously described, in some
embodiments, even though the NVRAM 152A is capable of
byte-level addressability, NVRAM controller 332 may still
access NVRAM mass storage 152A in blocks of multiple
bytes, depending on the implementation (e.g., 64 Kbytes, 128
Kbytes, etc.). The specific manner in which data is accessed
from NVRAM mass storage 152A by NVRAM controller
332 may be transparent to software executed by the processor
310. For example, even through NVRAM mass storage 152A
may be accessed differently from Flash/magnetic/optical
mass storage 152A, the operating system may still view
NVRAM mass storage 152A as a standard mass storage
device (e.g., a serial ATA hard drive or other standard form of
mass storage device).

In an embodiment where NVRAM mass storage 152A acts
as a total replacement for the flash/magnetic/optical mass
storage 152B, it is not necessary to use storage drivers for
block-addressable storage access. The removal of storage
driver overhead from storage access can increase access
speed and save power. In alternative embodiments where it is
desired that NVRAM mass storage 152A appears to the OS
and/or applications as block-accessible and indistinguishable
from flash/magnetic/optical mass storage 152B, emulated
storage drivers can be used to expose block-accessible inter-
faces (e.g., Universal Serial Bus (USB) Bulk-Only Transfer
(BOT), 1.0; Serial Advanced Technology Attachment
(SATA), 3.0; and the like) to the software for accessing
NVRAM mass storage 152A.

In one embodiment, NVRAM 142 acts as a total replace-
ment or supplement for firmware memory such as BIOS flash
362 and TPM flash 372 (illustrated with dotted lines in FIG.
3 to indicate that they are optional). For example, the
NVRAM 142 may include a BIOS NVRAM 172 portion to
supplement or replace the BIOS flash 362 and may include a
TPM NVRAM 173 portion to supplement or replace the TPM
flash 372. Firmware memory can also store system persistent
states used by a TPM 334 to protect sensitive system infor-
mation (e.g., encryption keys). In one embodiment, the use of
NVRAM 142 for firmware memory removes the need for
third party flash parts to store code and data that are critical to
the system operations.

Continuing then with a discussion of the system of FIG. 3,
in some embodiments, the architecture of computer system
100 may include multiple processors, although a single pro-
cessor 310 is illustrated in FIG. 3 for simplicity. Processor
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310 may be any type of data processor including a general
purpose or special purpose central processing unit (CPU), an
application-specific integrated circuit (ASIC) or a digital sig-
nal processor (DSP). For example, processor 310 may be a
general-purpose processor, such as a Core™ 13, 15,17, 2 Duo
and Quad, Xeon™, or Itanium™ processor, all of which are
available from Intel Corporation, of Santa Clara, Calif. Alter-
natively, processor 310 may be from another company, such
as ARM Holdings, [td, of Sunnyvale, Calif., MIPS Technolo-
gies of Sunnyvale, Calif., etc. Processor 310 may be a special-
purpose processor, such as, for example, a network or com-
munication processor, compression engine, graphics
processor, co-processor, embedded processor, or the like.
Processor 310 may be implemented on one or more chips
included within one or more packages. Processor 310 may be
a part of and/or may be implemented on one or more sub-
strates using any of a number of process technologies, such
as, for example, BiICMOS, CMOS, or NMOS. In the embodi-
ment shown in FIG. 3, processor 310 has a system-on-a-chip
(SOC) configuration.

In one embodiment, the processor 310 includes an inte-
grated graphics unit 311 which includes logic for executing
graphics commands such as 3D or 2D graphics commands.
While the embodiments of the invention are not limited to any
particular integrated graphics unit 311, in one embodiment,
the graphics unit 311 is capable of executing industry stan-
dard graphics commands such as those specified by the Open
GL and/or Direct X application programming interfaces
(APIs) (e.g., OpenGL 4.1 and Direct X 11).

The processor 310 may also include one or more cores
101-104, although a single core is illustrated in FIG. 3, again,
for the sake of clarity. In many embodiments, the core(s)
101-104 includes internal functional blocks such as one or
more execution units, retirement units, a set of general pur-
pose and specific registers, etc. If the core(s) are multi-
threaded or hyper-threaded, then each hardware thread may
be considered as a “logical” core as well. The cores 101-104
may be homogenous or heterogeneous in terms of architec-
ture and/or instruction set. For example, some of the cores
may be in order while others are out-of-order. As another
example, two or more of the cores may be capable of execut-
ing the same instruction set, while others may be capable of
executing only a subset of that instruction set or a different
instruction set.

The processor 310 may also include one or more caches,
such as cache 313 which may be implemented as a SRAM
and/or a DRAM. In many embodiments that are not shown,
additional caches other than cache 313 are implemented so
that multiple levels of cache exist between the execution units
in the core(s) 101-104 and memory devices 150B and 151B.
For example, the set of shared cache units may include an
upper-level cache, such as a level 1 (L1) cache, mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other
levels of cache, an (LLC), and/or different combinations
thereof. In different embodiments, cache 313 may be appor-
tioned in different ways and may be one of many different
sizes in different embodiments. For example, cache 313 may
be an 8 megabyte (MB) cache, a 16 MB cache, etc. Addition-
ally, in different embodiments the cache may be a direct
mapped cache, a fully associative cache, a multi-way set-
associative cache, or a cache with another type of mapping. In
other embodiments that include multiple cores, cache 313
may include one large portion shared among all cores or may
be divided into several separately functional slices (e.g., one
slice for each core). Cache 313 may also include one portion
shared among all cores and several other portions that are
separate functional slices per core.
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The processor 310 may also include a home agent 314
which includes those components coordinating and operating
core(s) 101-104. The home agent unit 314 may include, for
example, a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the core(s) 101-104 and the
integrated graphics unit 311. The display unit is for driving
one or more externally connected displays.

As mentioned, in some embodiments, processor 310
includes an integrated memory controller (IMC) 331, near
memory cache (MSC) controller, and NVRAM controller
332 all of which can be on the same chip as processor 310, or
on a separate chip and/or package connected to processor
310. DRAM device 144 may be on the same chip or a different
chip as the IMC 331 and MSC controller 124; thus, one chip
may have processor 310 and DRAM device 144; one chip
may have the processor 310 and another the DRAM device
144 and (these chips may be in the same or different pack-
ages); one chip may have the core(s) 101-104 and another the
IMC 331, MSC controller 124 and DRAM 144 (these chips
may be in the same or different packages); one chip may have
the core(s) 101-104, another the IMC 331 and MSC controller
124, and another the DRAM 144 (these chips may be in the
same or different packages); etc.

In some embodiments, processor 310 includes an /O sub-
system 115 coupled to IMC 331. I/O subsystem 115 enables
communication between processor 310 and the following
serial or parallel I/O devices: one or more networks 336 (such
as a Local Area Network, Wide Area Network or the Internet),
storage 1/O device (such as flash/magnetic/optical mass stor-
age 152B, BIOS flash 362, TPM flash 372) and one or more
non-storage 1/0 devices 337 (such as display, keyboard,
speaker, and the like). I/O subsystem 115 may include a
platform controller hub (PCH) (not shown) that further
includes several 1/O adapters 338 and other /O circuitry to
provide access to the storage and non-storage I/O devices and
networks. To accomplish this, [/O subsystem 115 may have at
least one integrated I/O adapter 338 for each 1/O protocol
utilized. 1/O subsystem 115 can be on the same chip as pro-
cessor 310, or on a separate chip and/or package connected to
processor 310.

1/O adapters 338 translate a host communication protocol
utilized within the processor 310 to a protocol compatible
with particular I/0 devices. For flash/magnetic/optical mass
storage 152B, some of the protocols that /O adapters 338
may translate include Peripheral Component Interconnect
(PCI)-Express (PCI-E), 3.0; USB, 3.0; SATA, 3.0; Small
Computer System Interface (SCSI), Ultra-640; and Institute
of Electrical and FElectronics Engineers (IEEE) 1394
“Firewire;” among others. For BIOS flash 362, some of the
protocols that 1/O adapters 338 may translate include Serial
Peripheral Interface (SPI), Microwire, among others. Addi-
tionally, there may be one or more wireless protocol 1/O
adapters. Examples of wireless protocols, among others, are
used in personal area networks, such as IEEE 802.15 and
Bluetooth, 4.0; wireless local area networks, such as IEEE
802.11-based wireless protocols; and cellular protocols.

In some embodiments, the [/O subsystem 115 is coupled to
a TPM control 334 to control access to system persistent
states, such as secure data, encryption keys, platform configu-
ration information and the like. In one embodiment, these
system persistent states are storedina TMP NVRAM 173 and
accessed via NVRAM controller 332

In one embodiment, TPM 334 is a secure micro-controller
with cryptographic functionalities. TPM 334 has a number of
trust-related capabilities; e.g., a SEAL capability for ensuring
that data protected by a TPM is only available for the same
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TPM. TPM 334 can protect data and keys (e.g., secrets) using
its encryption capabilities. In one embodiment, TPM 334 has
a unique and secret RSA key, which allows it to authenticate
hardware devices and platforms. For example, TPM 334 can
verify that a system seeking access to data stored in computer
system 300 is the expected system. TPM 334 is also capable
of reporting the integrity of the platform (e.g., computer sys-
tem 300). This allows an external resource (e.g., a server on a
network) to determine the trustworthiness of the platform but
does not prevent access to the platform by the user.

In some embodiments, 1/O subsystem 315 also includes a
Management Engine (ME) 335, which is a microprocessor
that allows a system administrator to monitor, maintain,
update, upgrade, and repair computer system 300. In one
embodiment, a system administrator can remotely configure
computer system 300 by editing the contents of the decode
table 333 through ME 335 via networks 336.

For convenience of explanation, the remainder ofthe appli-
cation sometimes refers to NVRAM 142 as a PCMS device.
A PCMS device includes multi-layered (vertically stacked)
PCM cell arrays that are non-volatile, have low power con-
sumption, and are modifiable at the bit level. As such, the
terms NVRAM device and PCMS device may be used inter-
changeably in the following discussion. However it should be
realized, as discussed above, that different technologies
besides PCMS may also be utilized for NVRAM 142.

It should be understood that a computer system can utilize
NVRAM 142 for system memory, mass storage, firmware
memory and/or other memory and storage purposes even if
the processor of that computer system does not have all of the
above-described components of processor 310, or has more
components than processor 310.

In the particular embodiment shown in FIG. 3, the MSC
controller 124 and NVRAM controller 332 are located on the
same die or package (referred to as the CPU package) as the
processor 310. In other embodiments, the MSC controller
124 and/or NVRAM controller 332 may be located off-die or
oft-CPU package, coupled to the processor 310 or CPU pack-
age over a bus such as a memory bus (like a DDR bus (e.g., a
DDR3, DDRA4, etc)), a PCI express bus, a desktop manage-
ment interface (DMI) bus, or any other type of bus.

Exemplary PCM bus and packaging configurations

FIGS. 4A-M illustrates a variety of different deployments
in which the processor, near memory and far memory are
configured and packaged in different ways. In particular, the
series of platform memory configurations illustrated in FIGS.
4A-M enable the use of new non-volatile system memory
such as PCM technologies or, more specifically, PCMS tech-
nologies.

While some of the same numerical designations are used
across multiple figures in FIGS. 4A-N; this does not neces-
sarily mean that that the structures identified by those numeri-
cal designations are always identical. For example, while the
same numbers are used to identify an integrated memory
controller (IMC) 331 and CPU 401 in several figures, these
components may be implemented differently in different fig-
ures. Some of these differences are not highlighted because
they are not pertinent to understanding the underlying prin-
ciples of the invention.

While several different system platform configuration
approaches are described below, these approaches fall into
two broad categories: split architecture, and unified architec-
ture. Briefly, in the split architecture scheme, a memory side
cache (MSC) controller (e.g., located in the processor die or
on a separate die in the CPU package) intercepts all system
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memory requests. There are two separate interfaces that “flow
downstream” from that controller that exit the CPU package
to couple to the Near Memory and Far Memory. Each inter-
face is tailored for the specific type of memory and each
memory can be scaled independently in terms of performance
and capacity.

In the unified architecture scheme a single memory inter-
face exits the processor die or CPU package and all memory
requests are sent to this interface. The MSC controller along
with the Near and Far Memory subsystems are consolidated
on this single interface. This memory interface must be tai-
lored to meet the memory performance requirements of the
processor and must support a transactional, out-of-order pro-
tocol at least because PCMS devices may not process read
requests in order. In accordance with the above general cat-
egories, the following specific platform configurations may
be employed.

The embodiments described below include various types
of buses/channels. The terms “bus” and “channel” are used
synonymously herein. The number of memory channels per
DIMM socket will depend on the particular CPU package
used in the computer system (with some CPU packages sup-
porting, for example, three memory channels per socket).

Additionally, in the embodiments described below which
use DRAM, virtually any type of DRAM memory channels
may be used including, by way of example and not limitation,
DDR channels (e.g., DDR3, DDR4, DDRS, etc). Thus, while
DDR is advantageous because of its wide acceptance in the
industry, resulting price point, etc., the underlying principles
of the invention are not limited to any particular type of
DRAM or volatile memory.

FIG. 4A illustrates one embodiment of a split architecture
which includes one or more DRAM devices 403-406 operat-
ing as near memory acting as cache for FM (i.e., MSC) in the
CPU package 401 (either on the processor die or on a separate
die) and one or more NVRAM devices such as PCM memory
residing on DIMMs 450-451 acting as far memory. High
bandwidth links 407 on the CPU package 401 interconnect a
single or multiple DRAM devices 403-406 to the processor
310 which hosts the integrated memory controller (IMC) 331
and MSC controller 124. Although illustrated as separate
units in FIG. 4A and other figures described below, the MSC
controller 124 may be integrated within the memory control-
ler 331 in one embodiment.

The DIMMs 450-451 use DDR slots and electrical connec-
tions defining a DDR channels 440 with DDR address, data
and control lines and voltages (e.g., the DDR3 or DDR4
standard as defined by the Joint Electron Devices Engineering
Council (JEDEC)). The PCM devices on the DIMMs 450-
451 provide the far memory capacity ofthis splitarchitecture,
with the DDR channels 440 to the CPU package 401 able to
carry both DDR and transactional protocols. In contrast to
DDR protocols in which the processor 310 or other logic
within the CPU package (e.g., the IMC 331 or MSC controller
124) transmits a command and receives an immediate
response, the transactional protocol used to communicate
with PCM devices allows the CPU 401 to issue a series of
transactions, each identified by a unique transaction ID. The
commands are serviced by a PCM controller on the recipient
one of the PCM DIMMs, which sends responses back to the
CPU package 401, potentially out of order. The processor310
or other logic within the CPU package 401 identifies each
transaction response by its transaction 1D, which is sent with
the response. The above configuration allows the system to
support both standard DDR DRAM-based DIMMs (using
DDR protocols over DDR electrical connections) and PCM-
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based DIMMs configurations (using transactional protocols
over the same DDR electrical connections).

FIG. 4B illustrates a split architecture which uses DDR
DRAM-based DIMMs 452 coupled over DDR channels 440
to form near memory which acts as an MSC. The processor
310 hosts the memory controller 331 and MSC controller
124. NVRAM devices such as PCM memory devices reside
on PCM-based DIMM:s 453 that use DDR slots and electrical
connections on additional DDR channels 442 off the CPU
package 401. The PCM-based DIMMSs 453 provide the far
memory capacity of this split architecture, with the DDR
channels 442 to the CPU package 401 being based on DDR
electrical connections and able to carry both DDR and trans-
actional protocols. This allows the system to be configured
with varying numbers of DDR DRAM DIMMs 452 (e.g.,
DDR4 DIMMS) and PCM DIMMs 453 to achieve the desired
capacity and/or performance points.

FIG. 4C illustrates a split architecture which hosts the near
memory 403-406 acting as a memory side cache (MSC) on
the CPU package 401 (either on the processor die or on a
separate die). High bandwidth links 407 on the CPU package
are used to interconnect a single or multiple DRAM devices
403-406 to the processor 310 which hosts the memory con-
troller 331 and the MSC controller 124, as defined by the split
architecture. NVRAM such as PCM memory devices reside
on PCI Express cards or risers 455 that use PCI Express
electrical connections and PCI Express protocol or a different
transactional protocol over the PCI Express bus 454. The
PCM devices on the PCI Express cards or risers 455 provide
the far memory capacity of this split architecture.

FIG. 4D is a split architecture which uses DDR DRAM-
based DIMMs 452 and DDR channels 440 to form the near
memory which acts as an MSC. The processor 310 hosts the
memory controller 331 and MSC controller 124. NVRAM
such as PCM memory devices 455 reside on PCI Express
cards orrisers that use PCI Express electrical connections and
PCI Express protocol or a different transactional protocol
over the PCI Express link 454. The PCM devices on the PCI
Express cards or risers 455 provide the far memory capacity
of'this split architecture, with the memory channel interfaces
off the CPU package 401 providing multiple DDR channels
440 for DDR DRAM DIMMs 452.

FIG. 4E illustrates a unified architecture which hosts both
near memory acting as an MSC and far memory NVRAM
such as PCM on PCI Express cards or risers 456 that use PCI
Express electrical connections and PCI Express protocol or a
different transactional protocol over the PCI Express bus 454.
The processor 310 hosts the integrated memory controller
331 but, in this unified architecture case, the MSC controller
124 resides on the card or riser 456, along with the DRAM
near memory and NVRAM far memory.

FIG. 4F illustrates a unified architecture which hosts both
the near memory acting as an MSC and the far memory
NVRAM such as PCM, on DIMMs 458 using DDR channels
457. The near memory in this unified architecture comprises
DRAM on each DIMM 458, acting as the memory side cache
to the PCM devices on that same DIMM 458, that form the far
memory of that particular DIMM. The MSC controller 124
resides on each DIMM 458, along with the near and far
memory. In this embodiment, multiple memory channels of a
DDR bus 457 are provided off the CPU package. The DDR
bus 457 of this embodiment implements a transactional pro-
tocol over DDR electrical connections.

FIG. 4G illustrates a hybrid split architecture, whereby the
MSC controller 124 resides on the processor 310 and both
near memory and far memory interfaces share the same DDR
bus 410. This configuration uses DRAM-based DDR DIMMs
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411a as near memory acting as an MSC with the PCM-Based
DIMMs 4115 (i.e., far memory) residing on the same memory
channel of the DDR bus 410, using DDR slots and NVRAM
(such as PCM memory devices). The memory channels of this
embodiment carry both DDR and transactional protocols
simultaneously to address the near memory and far memory
DIMMs, 411a and 4115, respectively.

FIG. 4H illustrates a unified architecture in which the near
memory 461a acting as a memory side cache resides on a
mezzanine or riser 461, in the form of DRAM-based DDR
DIMMs. The memory side cache (MSC) controller 124 is
located in the riser’s DDR and PCM controller 460 which
may have two or more memory channels connecting to DDR
DIMM channels 470 on the mezzanine/riser 461 and inter-
connecting to the CPU over high performance interconnect(s)
462 such as a differential memory link. The associated far
memory 46154 sits on the same mezzanine/riser 461 and is
formed by DIMMs that use DDR channels 470 and are popu-
lated with NVRAM (such as PCM devices).

FIG. 4l illustrates a unified architecture that can be used as
memory capacity expansion to a DDR memory subsystem
and DIMMs 464 connected to the CPU package 401 on its
DDR memory subsystem, over a DDR bus 471. For the addi-
tional NVM-based capacity in this configuration, the near
memory acting as a MSC resides on a mezzanine or riser 463,
in the form of DRAM based DDR DIMMs 463a. The MSC
controller 124 is located in the riser’s DDR and PCM con-
troller 460 which may have two or more memory channels
connecting to DDR DIMM channels 470 on the mezzanine/
riser and interconnecting to the CPU over high performance
interconnect(s) 462 such as a differential memory link. The
associated far memory 4635 sits on the same mezzanine/riser
463 and is formed by DIMMs 4635 that use DDR channels
470 and are populated with NVRAM (such as PCM devices).

FIG. 4] is a unified architecture in which a near memory
acting as a memory side cache (MSC) resides on each and
every DIMM 465, in the form of DRAM. The DIMMs 465 are
on a high performance interconnect/channel(s) 462, such as a
differential memory link, coupling the CPU package 401 with
the MSC controller 124 located on the DIMMs. The associ-
ated far memory sits on the same DIMMs 465 and is formed
by NVRAM (such as PCM devices).

FIG. 4K illustrates a unified architecture in which the near
memory acting as a MSC resides on every DIMM 466, in the
form of DRAM. The DIMMs are on high performance inter-
connect(s) 470 connecting to the CPU package 401 with the
MSC controller 124 located on the DIMMSs. The associated
far memory sits on the same DIMM 466 and is formed by
NVRAM (such as PCM devices).

FIG. 4L illustrates a split architecture which uses DDR
DRAM-based DIMMs 464 on a DDR bus 471 to form the
necessary near memory which acts as a MSC. The processor
310 hosts the integrated memory controller 331 and memory
side cache controller 124. NVRAM such as PCM memory
forms the far memory which resides on cards or risers 467 that
use high performance interconnects 468 communicating to
the CPU package 401 using a transactional protocol. The
cards or risers 467 hosting the far memory host a single
buffer/controller that can control multiple PCM-based
memories or multiple PCM-based DIMMs connected on that
riser.

FIG. 4M illustrates a unified architecture which may use
DRAM on a card or riser 469 to form the necessary near
memory which acts as a MSC. NVRAM such as PCM
memory devices form the far memory which also resides on
the cards or risers 469 that use high performance intercon-
nects 468 to the CPU package 401. The cards or risers 469
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hosting the far memory hosts a single buffer/controller that
can control multiple PCM-based devices or multiple PCM
based DIMMs on that riser 469 and also integrates the
memory side cache controller 124.

In some of the embodiments described above, such as that
illustrated in FIG. 4G, the DRAM DIMMS 411a and PCM-
based DIMMS 41156 reside on the same memory channel.
Consequently the same set of address/control and data lines
are used to connect the CPU to both the DRAM and PCM
memories. In order to reduce the amount of data traffic
through the CPU mesh interconnect, in one embodiment, a
DDR DIMM on a common memory channel with a PCM-
based DIMM is configured to act as the sole MSC for data
stored in the PCM-based DIMM. In such a configuration, the
far memory data stored in the PCM-based DIMM is only
cached in the DDR DIMM near memory within the same
memory channel, thereby localizing memory transactions to
that particular memory channel.

Additionally, to implement the above embodiment, the
system address space may be logically subdivided between
the different memory channels. For example, if there are four
memory channels, then ¥4 ofthe system address space may be
allocated to each memory channel. If each memory channel is
provided with one PCMS-based DIMM and one DDR
DIMM, the DDR DIMM may be configured to act as the MSC
for that /4 portion of the system address space.

The choice of system memory and mass storage devices
may depend on the type of electronic platforms on which
embodiments of the invention are employed. For example, in
a personal computer, tablet computer, notebook computer,
smartphone, mobile phone, feature phone, personal digital
assistant (PDA), portable media player, portable gaming
device, gaming console, digital camera, switch, hub, router,
set-top box, digital video recorder, or other devices that have
relatively small mass storage requirements, the mass storage
may be implemented using NVRAM mass storage 152A
alone, or using NVRAM mass storage 152A in combination
with a flash/magnetic/optical mass storage 152B. In other
electronic platforms that have relatively large mass storage
requirements (e.g., large-scale servers), the mass storage may
be implemented using magnetic storage (e.g., hard drives) or
any combination of magnetic storage, optical storage, holo-
graphic storage, mass-storage flash memory, and NVRAM
mass storage 152A. In such a case, system hardware and/or
software responsible for storage may implement various
intelligent persistent storage allocation techniques to allocate
blocks of persistent program code and data between the FM
151B/NVRAM storage 152A and a flash/magnetic/optical
mass storage 152B in an efficient or otherwise useful manner.

For example, in one embodiment a high powered server is
configured with a near memory (e.g., DRAM), a PCMS
device, and a magnetic mass storage device for large amounts
of persistent storage. In one embodiment, a notebook com-
puter is configured with a near memory and a PCMS device
which performs the role of both a far memory and a mass
storage device (i.e., which is logically partitioned to perform
these roles as shown in FIG. 3). One embodiment of a home
or office desktop computer is configured similarly to a note-
book computer, but may also include one or more magnetic
storage devices to provide large amounts of persistent storage
capabilities.

One embodiment of a tablet computer or cellular telephony
device is configured with PCMS memory but potentially no
near memory and no additional mass storage (for cost/power
savings). However, the tablet/telephone may be configured
with a removable mass storage device such as a flash or
PCMS memory stick.
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Various other types of devices may be configured as
described above. For example, portable media players and/or
personal digital assistants (PDAs) may be configured in a
manner similar to tablets/telephones described above, gam-
ing consoles may be configured in a similar manner to desk-
tops or laptops. Other devices which may be similarly con-
figured include digital cameras, routers, set-top boxes, digital
video recorders, televisions, and automobiles.

Embodiments of a MSC Architecture

In one embodiment of the invention, the bulk of DRAM in
system memory is replaced with PCM. As previously dis-
cussed, PCM provides significant improvements in memory
capacity at a significantly lower cost relative to DRAM and is
non-volatile. However, certain PCM characteristics such as
asymmetrical Read-vs-Write performance, write cycling
endurance limits, as well as its non-volatile nature makes it
challenging to directly replace DRAM without incurring
major software changes. The embodiments of the invention
described below provide a software-transparent way to inte-
grate PCM while also enabling newer usages through soft-
ware enhancements. These embodiments promote a success-
ful transition in memory subsystem architecture and provide
a way to consolidate both memory and storage using a single
PCM pool, thus mitigating the need for a separate non-vola-
tile storage tier in the platform.

The particular embodiment illustrated in FIG. 5A includes
one or more processor cores 501 each with an internal
memory management unit (MMU) 502 for generating
memory requests and one or more internal CPU caches 503
for storing lines of program code and data according to a
specified cache management policy. As previously men-
tioned, the cache management policy may comprise an exclu-
sive cache management policy (in which any line present in
one particular cache level in the hierarchy is not present in any
other cache level) or an inclusive cache management policy
(in which duplicate cache lines are stored at different levels of
the cache hierarchy). The specific cache management policies
which may be employed for managing the internal caches 503
are well understood by those of skill in the art and, as such,
will not be described here in detail. The underlying principles
of the invention are not limited to any particular cache man-
agement policy.

Also illustrated in FIG. 5A is a home agent 505 which
provides access to the MSC 510 by generating memory chan-
nel addresses (MCAs) for memory requests. The home agent
505 is responsible for managing a specified memory address
space and resolves memory access conflicts directed to that
memory space. Thus, if any core needs to access a given
address space, it will send requests to that home agent 505,
which will then send the request to that particular MMU 502.
In one embodiment, one home agent 505 is allocated per
MMU 502; however, in some embodiments, a single home
agent 505 may service more than one memory management
unit 502.

As illustrated in FIG. 5A, a MSC 510 is configured in front
of the PCM-based far memory 519. The MSC 510 manages
access to a near memory 518 and forwards memory access
requests (e.g., reads and writes) to the far memory controller
521 when appropriate (e.g., when the requests cannot be
serviced from the near memory 518). The MSC 510 includes
a cache control unit 512 which operates responsive to a tag
cache 511 which stores tags which identify the cache lines
contained within the near memory 518. In operation, when
the cache control unit 512 determines that the memory access
request can be serviced from the near memory 518 (e.g., in
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response to a cache hit), it generates a near memory address
(NMA) to identify data stored within the near memory 518. A
near memory control unit 515 interprets the NMA and
responsively generates electrical signals to access the near
memory 518. As previously mentioned, in one embodiment,
the near memory is a dynamic random access memory
(DRAM). In such a case, the electrical signals may include
row address strobe (RAS) and column address strobe (CAS)
signals. It should be noted, however, that the underlying prin-
ciples of the invention are not limited to the use of DRAM for
near memory.

Another component that ensures software-transparent
memory application is an optimized PCM far memory con-
troller 521 that manages the PCM far memory 530 character-
istics while still providing the performance required. In one
embodiment, the PCM controller 521 includes an Address
Indirection Table 520 that translates the MCA generated by
the cache control unit 515 to a PDA which is used to directly
address the PCM far memory 530. These translations may
occur at the granularity of a “block” which is typically 5 KB.
The translation is required as, in one embodiment, the far
memory controller 521 continuously moves the PCM blocks
throughout the PCM device address space to ensure no wear-
out hot spots due to a high frequency of writes to any specific
block. As previously described, such a technique is some-
times referred to herein as “wear-leveling”.

Thus, the MSC 510 is managed by the cache control unit
512 which allows the MSC 510 to absorb, coalesce and filter
transactions (e.g., reads and writes) to the PCM far memory
530. The cache control unit 512 manages all data movement
and consistency requirements between the near memory 518
and the PCM far memory 530. Additionally, in one embodi-
ment, the MSC cache controller 512 interfaces to the CPU(s)
and provides the standard synchronous load/store interface
used in traditional DRAM based memory subsystems.

Exemplary read and write operations will now be described
within the context of the architecture shown in FIG. 5A. In
one embodiment, a read operation will first arrive at the MSC
controller 512 which will perform a look-up to determine if
the requested data is present (e.g., utilizing the tag cache 511).
If present, it will return the data to the requesting CPU, core
501 or I/O device (not shown). If the data is not present, the
MSC controller 512 will send the request along with the
system memory address (also referred to herein as the
memory channel address or MCA) to the PCM far memory
controller 521. The PCM controller 521 will use the Address
Indirection Table 520 to translate the address to a PDA and
direct the read operation to this region of the PCM. Upon
receiving the requested data from the PCM far memory 530,
the PCM controller 521 will return the requested data to the
MSC controller 512 which will store the data in the MSC near
memory 518 and also send the data to the requesting CPU
core 501, or /O Device. Subsequent requests for this data
may be serviced directly from the MSC near memory 518
until it is replaced by some other PCM data.

In one embodiment, a memory write operation also first
goes to the MSC controller 512 which writes it into the MSC
near memory 518. In this embodiment, the data may not be
sent directly to the PCM far memory 530 when a write opera-
tion is received. For example, the data may be sent to the PCM
far memory 530 only when the location in the MSC near
memory 518 in which the data is stored must be re-used for
storing data for a different system memory address. When this
happens, the MSC controller 512 notices that the data is not
current in PCM far memory 530 and will thus retrieve it from
near memory 518 and send it to the PCM controller 521. The
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PCM controller 521 looks up the PDA for the system memory
address and then writes the data to the PCM far memory 530.

In one embodiment, the size of the MSC near memory 518
will be dictated by the workload memory requirements as
well as the near and far memory performance. For a DRAM-
based MSC, the size may be set to a tenth the size of the
workload memory footprint or the PCM far memory 530 size.
Such an MSC is very large compared to conventional caches
found in current processor/system architectures. By way of
example, and not limitation, for a PCM far memory size of
128 GB, the size of the MSC near memory can be as large as
16 GB.

FIG. 5B illustrates additional details associated with one
embodiment of the MSC 510. This embodiment includes a set
of logical units responsible for commands and addressing
including a command buffer tracking unit 542 for buffering
commands/addresses and a cache access mode check unit 544
which selects an MSC operating mode in response to control
signal from an MSC Range Register (RR) unit 545. Several
exemplary modes of operation are described below. Briefly,
these may include modes in which the near memory is used in
a traditional caching role and modes in which the near
memory 518 forms part of system memory. A tag checking/
command scheduler 550 uses tags from the tag cache 511 to
determine whether a particular cache line is stored in the near
memory 518 and a near memory controller 515 generates
channel address signals (e.g., CAS and RAS signals).

This embodiment also includes a set of logical units
responsible for data routing and processing including a set of
data bufters 546 for storing data fetched from near memory or
stored to near memory. In one embodiment, a prefetch data
cache 547 is also included for storing data prefetched from
near memory and/or far memory. However, the prefetch data
cache 547 is optional and is not necessary for complying with
the underlying principles of the invention.

An error correction code (ECC) generator/checker unit 552
generates and checks ECCs to ensure that data written to or
read from near memory is free from errors. As discussed
below, in one embodiment of the invention, the ECC genera-
tor/checker unit 552 is modified to store cache tags. Specific
ECCs are well understood by those of ordinary skill in the art
and will therefore not be described here in detail. The channel
controllers 553 couple the data bus of the near memory 518 to
the MSC 510 and generate the necessary electrical signaling
for accessing the near memory 518 (e.g., RAS and CAS
signaling for a DRAM near memory).

Also illustrated in FIG. 5B is a far memory control inter-
face 548 for coupling the MSC 510 to far memory. In particu-
lar, the far memory control interface 548 generates the MCAs
required to address the far memory and communicates data
between the data buffers 546 and far memory.

As mentioned, the near memory 518 employed in one
embodiment is very large compared to conventional caches
found in current processor/system architectures. Conse-
quently, the tag cache 511 that maintains the system memory
address translation to near memory addresses may also be
very large. The cost of storing and looking up the MSC tags
can be a significant impediment to building large caches. As
such, in one embodiment of the invention, this issue is
resolved using an innovative scheme that stores the cache tags
within the storage allocated in the MSC for ECC protection,
thereby essentially removing the cost of storage for the tags.

This embodiment is illustrated generally in FIG. 5C which
shows an integrated tag cache and ECC unit 554 for storing/
managing cache tags, storing ECC data, and performing ECC
operations. As illustrated, the stored tags are provided to the
tag check/command scheduler 550 upon request when per-
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forming tag check operations (e.g., to determine if a particular
block of data is stored within the near memory cache 518).

FIG. 5D illustrates the organization of an exemplary set of
data 524 and a corresponding ECC 523 and tag 522. As
illustrated, the tag 522 is co-located with the ECC 523 in a
memory of the tag cache/ECC unit 554 (e.g., DDR DRAM in
one embodiment). In this example, several blocks of data
totaling 64 Bytes has been read into the tag cache/ECC unit
554. An ECC check/generator unit 554a generates an ECC
using the data 525 and compares the generated ECC against
the existing ECC 523 associated with the data. In this
example, a 4-Byte ECC is generated for the 64 Bytes of data
525. However, the underlying principles of the invention are
not limited to any particular type or size of ECC. Additionally,
it should be noted that the term “data” is used broadly herein
to refer to both executable program code and data, both of
which may be stored in the data storage 525 shown in FIG.
5D.

In one embodiment, a 3-Byte (24-bit) tag 522 is used with
the bit assignments illustrated in FIG. 5D. Specifically, bits 00
to 16 are address bits which provide the upper address bits of
the cache line. For a system address having 56 bits (e.g., SPA
[55:00]), bits 00 to 16 map to bits 55-29 of the system address,
allowing for the smallest cache size of 512 MB. Returning to
the 3-Byte tag, bits 17-19 are reserved; bits 20-21 are direc-
tory bits which provide information on remote CPU caching
of'the cache line (e.g., providing an indication as to the other
CPUs on which the line is cached); bits 21-22 indicate the
current state of the cache line (e.g., 00=clean; 01=dirty; 10
and 11=unused); and bit 23 indicates whether the cache line is
valid (e.g., 1=valid; O=invalid).

Utilizing a direct-mapped cache architecture as described
above, which allows the near memory address to be directly
extracted from the system memory address reduces or elimi-
nates the latency cost of looking up the tag store before the
MSC 510 can be read, thereby significantly improving per-
formance. Moreover, the time to check the cache tags to
decide if the MSC 510 has the required data is also eliminated
as it is done in parallel with the ECC check of the data read
form the MSC.

Under certain conditions, storing tags with the data may
create an issue for writes. A write first reads the data in order
to ensure that it does not over-write data for some other
address. Such a read before every write could become costly.
One embodiment of the invention employs a dirty line tag
cache that maintains the tags of recently-accessed near
memory addresses (NMAs). Since many writes target
recently accessed addresses, a reasonably small tag cache can
get an effective hit rate to filter most of the reads prior to a
write.

Additional details associated with one embodiment of a
PCM DIMM 519 including a PCM far memory controller 521
and a set of PCM far memory modules 530q-i is illustrated in
FIG. 5E. In one embodiment, a single pool of PCM far
memory 530a-i is dynamically shared between system
memory and storage usages. In this embodiment, the entire
PCM pool 530a-i may be subdivided into “blocks” of 4 KB
size. A PCM Descriptor Table (PDT) 565 identifies the use of
each PCM block as either memory or storage. For example,
each row of the PDT may represent a particular block with a
particular column identifying the use of each block (e.g.,
1=memory; O=storage). In this embodiment, an initial system
configuration can partition the PCM blocks within the PCM
530a-i between storage and memory use (i.e., by program-
ming the PDT 565). In one embodiment, the same table is
used to exclude bad blocks and provide spare blocks for
wearing-leveling operations. In addition, the PDT 565 may
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also include the mapping of each PCMS block to a “logical”
block address used by software. In the case of System
Memory, the logical block address is the same as the MCA or
SPA. This association is needed to update the Address Indi-
rection Table (AIT) 563 whenever the PCMS block is moved
due to wear leveling. When this happens the logical block
address used by software has to be mapped to a different
PCMS Device Address (PDA). In one embodiment, this map-
ping is stored in the AIT and is updated on every wear-level
move.

As illustrated, the PCM controller 521 includes a system
physical address (SPA)-to-PCM mapper 556 which operates
in response to a wear management unit 555 and an address
indirection unit 563 to map SPAs to PCM blocks. In one
embodiment, the wear management logic 555 implements a
wear leveling algorithm to account for the fact that the storage
cells of the PCM 5304-530i begin to wear out after too many
write and/or erase accesses. Wear leveling spreads writes and
erases across the PCM device’s memory cells by, for
example, forcing data blocks with low cycle counts to occa-
sionally move, and thereby allowing high cycled data blocks
to be placed in memory cells that stored the low cycled data
blocks. Typically, the majority of blocks do not cycle, buthigh
cycle count blocks are most likely to fail and wear leveling
swaps addresses of high cycle count blocks with low cycle
count blocks. The wear management logic 555 may track the
cycle counts using one or more counters and registers (e.g.,
the counters may increment by one each time a cycle is
detected and the result may be stored in the set of registers).

In one embodiment, the address indirection logic 563
includes an address indirection table (AIT) containing an
indication of the PCM blocks to which write operations
should be directed. The AIT may be used to automatically
move blocks between memory and storage usages. From the
software perspective, the accesses to all the blocks uses tra-
ditional memory load/store semantics (i.e., wear leveling and
address indirection operations occur transparently to soft-
ware). In one embodiment, AIT is used to translate the SPA
that is generated by software to a PDA. This translation is
required as the need to uniformly wear the PCMS devices, the
data will need to be moved around in PDA space to avoid any
hotspots. When such a move occurs, the relationship between
SPA and PDA will change and the AIT will be updated to
reflect this new translation.

Following the SPA to PCM mapping, a scheduler unit 557
schedules the underlying PCM operations (e.g., reads and/or
writes) to the PCM devices 530a-1 and a PCM protocol
engine 558 generates the electrical signaling required for
performing the read/write operations. An ECC unit 562 per-
forms error detection and correction operations and data buft-
ers 561 temporarily buffer data being read from or written to
the PCM devices 530a-1. A persistent write bufter 559 is used
to hold data that is guaranteed to be written back to PCMS
even in the event of an unexpected power failure (e.g., it is
implemented using non-volatile storage). Flush support logic
560 is included to flush the persistent write buffers to PCMS,
either periodically and/or according to a specified data flush-
ing algorithm (e.g., after the persistent write buffers reach a
specified threshold).

In one embodiment, the MSC 510 automatically routes
storage accesses directly to the PCM far memory controller
521 and memory accesses to the MSC cache control unit 512.
Storage accesses coming to the PCM far memory controller
521 are treated as regular reads and writes and the address
indirection and wear leveling mechanisms described herein
are applied as usual. An additional optimization is employed
in one embodiment of the invention which can be imple-
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mented when data needs to move between storage and
memory. Since a common PCM pool 5304a-1 is used, data
movement can be eliminated or deferred by simply changing
the pointers in the translation tables (e.g., the AIT). For
example, when data is transferred from storage to memory, a
pointer identifying the data in a particular physical PCM
storage location may be updated to indicate that the same
physical PCM storage location is now a memory location in
system memory. In one embodiment, this is done by hardware
in a software-transparent manner to provide both perfor-
mance and power benefits.

In addition to the software-transparent mode of operation,
one embodiment of the MSC controller 512 provides alter-
nate modes of operations as indicated by the MSC range
registers (RRs) 545. These modes of operation may include,
but are not limited to the following:

1) Direct access of PCM memory for storage class appli-
cations. Such usage will also require the MSC controller 512
to ensure that writes submitted to PCM 519 are actually
committed to a persistent state.

2) Hybrid use of the near memory 518, exposing portions
of'it to software for direct use while maintaining the remain-
ing as an MSC. When a portion of near memory 518 is
exposed to software for direct use, that portion is directly
addressable within the system address space. This allows
certain applications to explicitly split their memory allocation
between a high-performance small region (the near memory
518) and a relatively lower performance bulk region (the far
memory 530). By contrast, the portion allocated as a cache
within the MSC does not form part of the system address
space (but instead acts as a cache for far memory 530 as
described herein).

As previously discussed, the MSC architecture is defined
such that several different system partitioning approaches are
possible. These approaches fall into two broad buckets:

(1) Split Architecture:

In this scheme the MSC controller 512 is located in the
CPU and intercepts al system memory requests. There are
two separate interfaces from the MSC that exit the CPU to
connect to the Near Memory (e.g., DRAM) and Far memory
(e.g., PCM). Each interface is tailored for the specific type of
memory and each memory can be scaled independently in
terms of performance and capacity.

(2) Unified Architecture:

Inthis scheme a single memory interface exits the CPU and
all memory requests are sent to this interface. The MSC
controller 512 along with the Near Memory (e.g., DRAM)
and Far Memory (e.g., PCM) subsystem are consolidated
external to the CPU on this single interface. In one embodi-
ment, this memory interface is tailored to meet the memory
performance requirements of the CPU and supports a trans-
actional, out-of-order protocol. The Near and Far memory
requirements are met in a “unified” manner on each of these
interfaces.

Within the scope of the above buckets several different
portioning options are feasible some of which are described
below.

(1) Split Example:

Near Memory: DDR5 DIMM’s

Near Memory Interface: One or more DDRS channels

Far Memory: PCM controller/device on a PCI express

(PCle) card

Far Memory Interface: x16 PCle, Gen 3

2) Unified Example:

CPU Memory Interface: one or more KTMI (or QPMI)

channels
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Near/Far Memory with MSC/PCM Controller on a Riser
Card
Near Memory Interface off MSC/PCM Controller: DDRS
Interface
Far Memory Interface off MSC/PCM Controller: PCM
Device Interface

Embodiments Having Different Near Memory
Modes of Operation

As discussed above, a two-level memory hierarchy may be
used for introducing fast non-volatile memory such as PCM
as system memory while using a very large DRAM-based
near memory. The near memory may be used as a hardware-
managed cache. However, some applications are not hard-
ware cache-friendly and, as such, would benefit from alter-
nate ways to use such memory. Because there may be several
different applications running on a server at any given time,
one embodiment of the invention allows multiple usage
modes to be enabled concurrently. Additionally, one embodi-
ment provides the ability to control the allocation of near
memory for each of these usage modes.

In one embodiment, the MSC controller 512 provides the
following modes for using near memory. As previously men-
tioned, in one embodiment, the current mode of operation
may be specified by operation codes stored in the MSC range
registers (RRs) 545.

(1) Write-Back Caching Mode:

In this mode, all or portions of the near memory 518 is used
as a cache for the PCM memory 530. While in write-back
mode, every write operation is directed initially to the near
memory 518 (assuming that the cache line to which the write
is directed is present in the cache). A corresponding write
operation is performed to update the PCM far memory 530
only when the cache line within the near memory 518 is to be
replaced by another cache line (in contrast to write-through
mode described below in which each write operation is imme-
diately propagated to the far memory 530).

In one embodiment, a read operation will first arrive at the
MSC cache controller 512 which will perform a look-up to
determine if the requested data is present in the PCM far
memory 518 (e.g., utilizing a tag cache 511). If present, it will
return the data to the requesting CPU, core 501 or 1/O device
(not shown in FIG. 5A). If the data is not present, the MSC
cache controller 512 will send the request along with the
system memory address to the PCM far memory controller
521. The PCM far memory controller 521 will translate the
system memory address to a PCM physical device address
(PDA) and direct the read operation to this region of the far
memory 530. As previously mentioned this translation may
utilize an address indirection table (AIT) 563 which the PCM
controller 521 uses to translate between system memory
addresses and PCM PDAs. In one embodiment, the AIT is
updated as part of the wear leveling algorithm implemented to
distribute memory access operations and thereby reduce wear
on the PCM FM 530.

Upon receiving the requested data from the PCM FM 530,
the PCM FM controller 521 returns the requested data to the
MSC controller 512 which stores the data in the MSC near
memory 518 and also sends the data to the requesting proces-
sor core 501, or /O Device (not shown in FIG. 5A). Subse-
quent requests for this data may be serviced directly from the
near memory 518 until it is replaced by some other PCM FM
data.

In one embodiment, a memory write operation also first
goes to the MSC controller 512 which writes it into the MSC
near memory acting as a FM cache 518. In this embodiment,
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the data may not be sent directly to the PCM FM 530 when a
write operation is received. For example, the data may be sent
to the PCM FM 530 only when the location in the MSC near
memory acting as a FM cache 518 in which the data is stored
must be re-used for storing data for a different system
memory address. When this happens, the MSC controller 512
notices that the data is not current in the PCM FM 530 and will
thus retrieve it from near memory acting as a FM cache 518
and send it to the PCM FM controller 521. The PCM control-
ler 521 looks up the PDA for the system memory address and
then writes the data to the PCM FM 530.

(2) Near Memory Bypass Mode:

In this mode all reads and writes bypass the NM acting as
a FM cache 518 and go directly to the PCM far memory 530.
Such a mode may be used, for example, when an application
is not cache friendly or requires data to be committed to
persistence at the granularity of a cache line. In one embodi-
ment, the caching performed by the processor caches 503 and
the NM acting as a FM cache 518 operate independently of
one another. Consequently, data may be cached in the NM
acting as a FM cache 518 which is not cached in the processor
caches 503 (and which, in some cases, may not be permitted
to be cached in the processor caches 503) and vice versa.
Thus, certain data which may be designated as “uncacheable”
in the processor caches 503 may be cached within the NM
acting as a FM cache 518.

(3) Near Memory Read-Cache Write Bypass Mode:

This is a variation of the above mode where read caching of
the persistent data from PCM 519 is allowed (i.e., the persis-
tent data is cached in the MSC 510 for read-only operations).
This is useful when most of the persistent data is “Read-Only”
and the application usage is cache-friendly.

(5) Near Memory Read-Cache Write-Through Mode:

This is a variation of the previous mode, where in addition
to read caching, write-hits are also cached. Every write to the
MSC near memory 518 causes a write to the PCM far memory
530. Thus, due to the write-through nature of the cache,
cache-line persistence is still guaranteed.

(5) Near Memory Direct Access Mode:

In this mode, all or portions of the near memory are directly
visible to software and form part of the system memory
address space. Such memory may be completely under soft-
ware control. Any data movement from the PCM memory 519
to this region of near memory requires explicit software cop-
ies. Such a scheme may create a non-uniform memory
address (NUMA) memory domain for software where it gets
much higher performance from near memory 518 relative to
PCM far memory 530. Such a usage may be employed for
certain high performance computing (HPC) and graphics
applications which require very fast access to certain data
structures. This near memory direct access mode is equivalent
to “pinning” certain cache lines in near memory. Such pin-
ning may be done effectively in larger, multi-way, set-asso-
ciative caches.

Table A below summarizes each of the above-described
modes of operation.

TABLE A

Mode Reads Writes
‘Write-Back Allocate on Miss Allocate on Miss
Cache Writeback on Dirty Writeback on Dirty

Evict Evict
Cache Bypass Bypass to Far Memory Bypass to Far Memory
Read Cache/Write  Allocate on Miss Bypass to Far Memory
Bypass Invalidate Cached Line
Read Cache/Write  Allocate on Miss Update only on Hit
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TABLE A-continued
Mode Reads Writes
Through Write through to
Far Memory
Direct Read Direct from Near Write Direct to Near
Access Memory Memory

No Far Memory Access  No Far Memory Access

The processor and chipset components used to implement
the above modes of operation include the following:

(1) A Memory-Side-Cache Controller 512 that manages
the near memory in a two layer memory (2L.M) hierar-
chy.

(2) A set of Range Registers 545 (see FIG. 5B) in the
memory-side-cache 510 that determines the system
address ranges for each of the above-described operat-
ing modes.

(3) A mechanism to acknowledge write completions from
the PCM memory subsystem 519 to the MSC controller
515.

(5) A mechanism to invalidate lines in the near memory
518.

(5) A flush engine to evict dirty lines to PCM and invalidate
in specified regions of the near memory address space.

In one embodiment, the memory ranges for each of the
usage modes are contiguous in system address space. How-
ever multiple, disjoint, regions may use the same mode. In
one embodiment, each mode range register within the set of
MSC RRs 545 provides the following information:

(1) the mode of operation (e.g., write-back, near memory

bypass mode, etc);

(2) therange base in the system address space (e.g.,at2 MB
granularity or greater); and

(3) a range mask field which identifies the size of the
region.

In one embodiment, the number of modes supported is
implementation-specific but it is assumed that only one con-
tiguous system address range is available for each mode of
operation. If a near memory direct access range register is
specified, then it is assumed that this is will be mapped to a
contiguous region starting at the bottom of the near memory
address space. Such a contiguous region must be smaller than
the size of near memory. Additionally, if any of the caching
modes are being used, the direct access region size must be
smaller than the near memory size to allow for adequate cache
size for the required performance. Such allocation of near
memory for various modes may be configurable by the user.

In summary, one embodiment of the invention is imple-
mented in accordance with the following set of operations:

(1) When any Read or Write Access reaches the Memory-
Side-Cache controller 512, it checks the Range Regis-
ters 545 (FIG. 5B) to determine the current mode of
operation.

(2) For any read cache/write bypass access, the MSC con-
troller 512 checks to see if the address is currently
cached. If it is, it must invalidate the line before sending
the write completion back to the source.

(3) For any Write Bypass direct PCM operation, the MSC
Controller 512 awaits a completion back from the PCM
controller 521 to ensure that the write is committed to a
globally visible buffer.

(4) Any Read or Write to the Direct Access mode space in
Near Memory, is directed to the appropriate region of
Near Memory. No transactions are sent to the PCM
memory.
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(5) Any change in the Range Register configuration to
increase or decrease any existing region or add a new
region, will require flushing of appropriate cached
regions to PCM. For example, if software wishes to
increase the size of the Direct Access mode region by
reducing the Write-Back Cache region, it may do so by
first evicting and invalidating the appropriate portion of
the Near Memory Region and then changing the Near
Memory Direct Access Mode Range Register. The MSC
Controller 510 will then know that future caching is
done to a smaller Near Memory Address Space.

One particular embodiment of the invention in which the
system physical address (SPA) space is divided up among
multiple MSCs is illustrated in FIG. 6A. In the illustrated
embodiment, MSC cache 654 and controller 656 are associ-
ated with SPA region 667a; MSC cache 655 and controller
657 are associated with SPA region 6675; MSC cache 661 and
controller 663 are associated with SPA region 667¢; and MSC
cache 660 and controller 662 are associated with SPA region
667d. Two CPUs, 670 and 671, are illustrated, each with four
cores, 650 and 651, respectively, and a home agent, 652 and
653, respectively. The two CPUs, 670 and 671, are coupled to
a common far memory controller 666 via far memory inter-
faces, 659 and 665, respectively.

Thus, in FIG. 6A, the entire SPA memory space is subdi-
vided into regions, with each region being associated with a
particular MSC and controller. In this embodiment, a given
MSC may have a non-contiguous SPA space allocation but no
two MSCs have will have overlapping SPA space. Moreover,
the MSCs are associated with non-overlapping SPA space
and no inter-MSC coherency techniques are required.

Any of the near memory modes described above may be
employed onthe architecture shown in FIG. 6 A. For example,
each MSC controller 656-657, 662-663 may be configured to
operate in Write-Back Caching Mode, Near Memory Bypass
Mode, Near Memory Read-Cache Write Bypass Mode, Near
Memory Read-Cache Write-Through Mode, or Near
Memory Direct Access Mode. As previously discussed, the
particular mode is specified within the range register (RR)
655 for each MSC 610.

In one embodiment, different MSCs may concurrently
implement different modes of operation. For example, the
range registers of MSC controller 656 may specity the Near
Memory Direct Access mode, the range registers of MSC
controller 657 may specify the Write Back Cache mode, the
range registers of MSC controller 662 may specify the Read
Cache/Write Bypass mode, and MSC controller 663 may
specify the Read Cache/Write Through mode. In addition, in
some embodiments, individual MSCs may concurrently
implement different modes of operation. For example, MSC
controller 656 may be configured to implement near memory
direct access mode for certain system address ranges and a
near memory bypass mode for other system address ranges.

The foregoing combinations are, of course, merely illus-
trative of the manner in which MSC controllers may be inde-
pendently programmed. The underlying principles of the
invention are not limited to these or any other combinations.

As described with respect to some of embodiments
described above (e.g., such as that described with respect to
FIG. 4G), an MSC and its MSC controller are configured to
operate on the same memory channel (e.g., the same physical
DDR bus) as the PCM DIMM responsible for that particular
SPA range. Consequently, in this embodiment, memory
transactions which occur within the designated SPA range are
localized within the same memory channel, thereby reducing
data traffic through the CPU mesh interconnect.
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FIG. 6B provides a graphical representation of how the
system memory address map 620, near memory address map
621 and PCM address map 622 may be configured in accor-
dance with embodiments of the invention. As previously dis-
cussed, the MSC controller 606 operates in a mode identified
by the range registers (RRs) 605. System memory map 620
has a first region 602 allocated for near memory direct access
mode, a second region 603 allocated for near memory bypass
mode, and a third region 605 allocated for write-back cache
mode. The MSC controller 606 provides access to the near
memory as indicated by near memory address map 621,
which includes a first region 608 allocated to a Write Back
Cache mode, and a second region 609 allocated to a Near
Memory Direct Access Mode. As illustrated, Near Memory
Cache Bypass operations are provided directly to the PCM
controller 610 operating in accordance with the PCM address
map 622, which includes a Near Memory Bypass region 611
(for Near Memory Bypass mode) and a Write-Back Cache
region 612 (for Write-Back Cache mode). Consequently, the
system memory map 620, near memory address map 621 and
PCM address map 622 may be subdivided based on the spe-
cific modes implemented by the MSC controllers.

FIGS. 6C and 6D illustrate addressing techniques
employed in one embodiment of the invention (some of which
may have already been generally described). In particular,
FIG. 6C shows how a system physical address (SPA) 675
maps to a near memory address (NMA) or a PCM device
address (PDA). In particular, the SPA is first decoded by
decode logic 676 within a processor to identify a home agent
605 (e.g., the home agent responsible for the decoded address
space). Decode logic 677 associated with the selected home
agent 605 further decodes the SPA 675 (or portion thereof) to
generate a memory channel address (MCA) identifying an
appropriate MSC cache controller 612 allocated to that par-
ticular SPA space. The selected cache controller 612 then
either maps the memory access request to a near memory
address at 678, followed optionally by an interleaving opera-
tion at 680 (described below) or, alternatively performs an
optional interleaving operation at 679, followed by mapping
681 by the PCM far memory controller to a PCM device
address PDA (e.g., using address indirection and wear man-
agement as described above).

One embodiment of an optional interleaving process is
illustrated in FIG. 6D which shows how software pages can
be broken up across multiple MSCs and PCM address spaces
using interleaving. In the example shown in FIG. 6D, two
pages 682-683 within the SPA space are interleaved by cache-
line interleave logic 685 to generate two sets of interleaved
lines 685-686 within the MCA space. For example, all of the
odd lines from the memory pages 682-683 (e.g., lines 1,3, 5,
etc.) may be sent to a first MCA space 685, and all of the even
lines from the memory pages 682-683 (e.g., lines 2, 5, 6, etc.)
may be sent to a second MCA space 686. In one embodiment,
the pages are 5 KByte pages, although the underlying prin-
ciples of the invention are not limited to any page size. PCM
controllers 687-688 operating in accordance with Address
Indirection Tables (AITs) and wear management logic then
rearrange the cache lines within the PCM device address
(PDA) memory space (as described above). Interleaving of
this nature may be used to distribute the workload across
MSCs 610 and/or PCM devices 619 (e.g., as an alternative to
non-uniform memory address (NUMA)).

System and Method for Intelligently Flushing Data
from a Processor into a Memory Subsystem

In current processor designs, when the processor cache is
flushed, no information is provided to the memory subsystem
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to differentiate between data which is no longer needed by the
processor (and can therefore be discarded) and data which
should be saved. As a result, all flushed data is saved. The
performance of new architectures such as those which
employ PCM or, more specifically, PCMS memory may be
improved if such information is provided to the memory
subsystem. For example, such information may be used to
reduce the number of writes to reduce wear on the PCMS
memory, particularly when used in combination with existing
wear leveling techniques.

Wear leveling was previously discussed in detail with
respect to FIG. 5E, which shows a PCM controller 521 (a
PCMS controller in one embodiment) with a system physical
address (SPA)-to-PCM mapper 556 operating in response to
a wear management unit 555 and an address indirection unit
563 to map SPAs to PCM blocks. In one embodiment, the
wear management logic 555 implements a wear leveling
algorithm to account for the fact that the storage cells of the
PCM 5304a-530i begin to wear out after too many write and/or
erase accesses. Wear leveling spreads writes and erases across
the PCM device’s memory cells by, for example, forcing data
blocks with low cycle counts to occasionally move, and
thereby allowing high cycled data blocks to be placed in
memory cells that stored the low cycled data blocks. Typi-
cally, the majority of blocks do not cycle, but high cycle count
blocks are most likely to fail and wear leveling swaps
addresses of high cycle count blocks with low cycle count
blocks. The wear management logic 555 may track the cycle
counts using one or more counters and registers (e.g., the
counters may increment by one each time a cycle is detected
and the result may be stored in the set of registers).

In one embodiment, the address indirection logic 563
includes an address indirection table (AIT) containing an
indication of the PCM blocks to which write operations
should be directed. The AIT may be used to automatically
move blocks between memory and storage usages. From the
software perspective, the accesses to all the blocks uses tra-
ditional memory load/store semantics (i.e., wear leveling and
address indirection operations occur transparently to soft-
ware). In one embodiment, AIT is used to translate the SPA
that is generated by software to a PDA. This translation is
required as the need to uniformly wear the PCMS devices, the
data will need to be moved around in PDA space to avoid any
hotspots. When such a move occurs, the relationship between
SPA and PDA will change and the AIT will be updated to
reflect this new translation.

In one embodiment, read and write data buffers 561 are
used to read data from PCMS 530a-1 and write data to the
PCMS to maximize the life of the PCMS parts, to increase
read/write bandwidth and to reduce power. If cache flush
information as described herein is not provided to the PCM
controller 521 it cannot differentiate between the data that are
no longer needed by the processor and data which are cur-
rently in use, thereby reducing the performance of the PCMS
memory 530a-i.

The embodiments of the invention described herein pro-
vide techniques for communicating memory flush informa-
tion to the memory subsystem to improve performance of the
PCMS memory by reducing the number of writes to PCMS.
The memory flush information also ensures that data which
needs to be saved is written to the PCMS memory controller
rather than remaining in the PCMS buffer during a power
cycle.

One embodiment of the invention uses the memory range
registers 545 previously described with respect to FIGS.
5B-C to differentiate between DRAM (e.g., DDR) memory
and memory with a buffer interface 561 such as the PCMS
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memory controller 521. In one embodiment, when a range
register indicates that a PCMS device is used to store a par-
ticular set of cached data, the processor generates memory
flush “hints” to the memory subsystem when the processor
cache is implicitly or explicitly flushed or when a memory
flush is requested. In one embodiment, the hints are provided
to the PCM controller 521 over a QuickPath Interconnect
(QPI) interface (a point-to-point processor interconnect
designed by the assignee of the present application which
replaces the front side bus (FSB) in certain processor archi-
tectures). It should be noted, however, that the underlying
principles of the invention are not limited to any particular
type of interface for exchanging data between a processor and
a memory subsystem. The memory subsystem then uses the
memory flush hints to manage buffering of the memory,
ensuring that data is written to PCMS memory only when
necessary.

In one embodiment, a bit is added to the memory range
registers 545 or, alternatively, the memory type range regis-
ters (MTRRs) used in some processors to identify access
modes to certain memory ranges such as uncached (UC),
write-through (WT), write combining (WC), write-protect
(WP), and write-back (WB). The new bit is used to indicate
whether to send memory flush data to the memory controller.
In one embodiment, when the processor flushes a memory
region associated with memory flush hint range, the processor
sends additional information to the memory controller
including the memory flush hint. When the memory control-
ler receives the memory flush hint, it writes the buffered data
back to the PCMS memory controller 521 (or actual PCMS
memory 530a-i). By way of example, and not limitation, the
processor may use a special memory flush page instruction
(MFLUSH) identifying a memory page to be flushed and
concurrently (or subsequently) provide a memory flush hint
to the memory controller in which the memory page resides.

FIG. 7 illustrates an exemplary architecture which includes
multiple CPUs 704-705 communicating with one another and
with a PCMS memory controller 521 over a QPI interface. A
south bridge module 706 is communicatively coupled to the
CPUs via a direct media interface (DMI). In addition, each
processor is communicatively coupled to its own DDR
memory 702-703 (although DDR is not necessarily required
for compliance with the underlying principles of the inven-
tion).

FIG. 8 illustrates an exemplary system memory map 801
for the system shown in FIG. 7 which includes an entry 810
mapping a first range of system memory addresses to DDR
memory 702; an entry 811 mapping a second range of system
memory addresses to DDR memory 703; and an entry 812
mapping a third range of system addresses to PCMS memory
521.

FIG. 9 illustrates an exemplary Memory Range Register
545 containing memory flush hint data 901 in accordance
with one embodiment of the invention. In the illustrated
implementation, the memory flush hint data 901 includes a
memory start location 910 providing the address of the start of
the memory region for which the memory flush hint is pro-
vided, a memory length location 911 specifying a length of
the memory region for which the memory flush hint is pro-
vided, and a memory flush enable/disable bit 912 indicating
whether the memory region identified by the memory start
location 910 and memory length location 911 must be stored
to PCMS memory in response to a flush condition. In one
embodiment, when the memory flush hint is enabled for a
given memory range, the CPU sends memory flush hints to
the memory subsystem. The memory flush hints may be gen-
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erated either through explicit invocation by software or as part
of'the CPU eviction algorithm.

FIG. 10 illustrates a PCMS memory controller 521 in
accordance with one embodiment of the invention which
includes a system address to local memory address translator
1001 for translating system addresses to PCMS device
addresses. In one embodiment, the system address to local
memory address translator 1001 illustrated in FIG. 10
includes the system physical address to PCMS address map
module 556 and address indication module 563 illustrated in
FIG. 5E. Additionally, in one embodiment, a set of configu-
ration registers 1002 include the memory range registers 545
for specifying whether flush hints will be provided for the
various system address ranges as described herein.

Also illustrated in FIG. 10 is a read and write buffer and a
PCMS protocol engine (both of which have been previously
described with respect to FIG. 5E). Two separate memory
channels are illustrated in FIG. 10 (channels 0 and 1) each of
which has N PCMS DIMMs. For example, DIMMs 1006 are
assigned to memory channel 0 and DIMMs 1007 are assigned
to memory channel 1. Of course, the underlying principles of
the invention are not limited to any particular configuration of
DIMMs and memory channels.

In one embodiment of the invention, flush hint processing
logic 1005 associated with the read and write buffer 561
makes use of the memory flush hint to decide whether to flush
the data from buffer to the PCMS DIMMs 1006-1007 or to
maintain the data in the buffer.

FIG. 11 illustrates one embodiment of a method for using
memory flush hints. At 1101 the processor flushes its cache
and, at 1102, a determination is made as to whether the
memory flush hint is enabled (e.g., via a bit in the MRR or
MTRR). If not, then at 1103, the system continues execution
without the use of hints. If so, then at 1104, a memory flush
hint containing the address for memory writes or invalidate
operations is sent to the PCMS memory controller.

At 1105, the memory controller receives the memory flush
hint from the processor and at 1106 a determination is made
as to whether the memory flush hint is received with the
address. If not, then a regular response is sent to the processor
at 1107. For example, a regular response according to one
embodiment is posted writes, were the acknowledgement is
send immediately after receiving the data back to the sender.
When the memory flush hint is received, the memory is writ-
ten back to the PCMS and then the acknowledgement is sent
to the sender. If so, then at 1108, the data stored in the PCMS
buffer is saved to PCMS memory in accordance with the
memory flush hint (e.g., as described above).

In embodiments in which the MFLUSH instructionis used,
it may be designed as a blocking call if a persistent store is a
required. Performing a memory flush on the entire PCMS
address range will ensure that all the data in the PCMS
memory is returned back to the PCMS memory devices. Here
the operations to flush the PCMS memory address range may
be specified with a memory fence instruction (MFENCE)
followed by a MFLUSH instruction indicating a specific page
number.

The embodiments of the invention described above com-
municate memory flush information to the memory sub-
system to improve performance of the PCMS memory by
reducing the number of writes to PCMS. These embodiments
also ensure that data which needs to be saved is written to the
PCMS memory controller (rather than remaining in the
PCMS buffer during a power cycle).

In one embodiment, one or more range registers (RRs) are
added to the memory controller logic of the processor (inte-
grated in the processor package or a separate silicon) where
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the range indicates the address space of the processor’s byte
addressable persistent memory. For writes that target the per-
sistent memory space as determined by aforementioned range
registers, the memory controller logic ensures that the writes
indeed are persistent (i.e., the PCMS controller returns an
acknowledge indicating that the write is persistent). Note that
the PCMS controller could also store the write in a power-
protected cache before returning the acknowledge and com-
plete the write later to the PCMS memory. This is an imple-
mentation choice for the PCM/PCMS controller.

The mechanism by which software assures itself that the
writes to persistent memory are indeed persistent is termed as
‘durable’. A write to persistent memory is durable at a point
when the content of the write will be preserved regardless of
power cycle or reset conditions that may occur following the
durability point.

In the embodiment where one or more range registers are
added to memory controller logic, software can assure itself
of durability by issuing a memory fence or a store fence
instruction. These fence instructions simply count the out-
standing writes from the processor core and wait for comple-
tion for writes for the writes from the memory controller
logic. Since the memory controller logic will only issue
completions if the writes that fall within the range registers
have all completed to the corresponding PCMS controller, the
completion of fence instruction is indication to software that
its writes to persistent memory are durable. This scheme is
illustrated in FIG. 12.

At 1201, the processor issues one or more writes to persis-
tent memory and issues memory fence operations to ensure
durability. If the write hits an address covered by the memory
controller range registers, determined at 1202, then at 1204
the memory controller logic issues a write to the PCMS
controller and waits for the acknowledgement. If not, then the
processor continues with regular execution at 1203.

When an acknowledgement is received from the PCMS
controller, determined at 1205, then at 1207, the processor
completes the memory fence operation. The processor waits
for the acknowledgement at 1206 to 1204 until the acknowl-
edgement is received.

Embodiments of the invention may include various steps,
which have been described above. The steps may be embod-
ied in machine-executable instructions which may be used to
cause a general-purpose or special-purpose processor to per-
form the steps. Alternatively, these steps may be performed
by specific hardware components that contain hardwired
logic for performing the steps, or by any combination of
programmed computer components and custom hardware
components.

As described herein, instructions may refer to specific con-
figurations of hardware such as application specific inte-
grated circuits (ASICs) configured to perform certain opera-
tions or having a predetermined functionality or software
instructions stored in memory embodied in a non-transitory
computer readable medium. Thus, the techniques shown in
the figures can be implemented using code and data stored
and executed on one or more electronic devices (e.g., an end
station, a network element, etc.). Such electronic devices
store and communicate (internally and/or with other elec-
tronic devices over a network) code and data using computer
machine-readable media, such as non-transitory computer
machine-readable storage media (e.g., magnetic disks; opti-
cal disks; random access memory; read only memory; flash
memory devices; phase-change memory) and transitory com-
puter machine-readable communication media (e.g., electri-
cal, optical, acoustical or other form of propagated signals—
such as carrier waves, infrared signals, digital signals, etc.). In
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addition, such electronic devices typically include a setof one
or more processors coupled to one or more other components,
such as one or more storage devices (non-transitory machine-
readable storage media), user input/output devices (e.g., a
keyboard, a touchscreen, and/or a display), and network con-
nections. The coupling of the set of processors and other
components is typically through one or more busses and
bridges (also termed as bus controllers). The storage device
and signals carrying the network traffic respectively represent
one or more machine-readable storage media and machine-
readable communication media. Thus, the storage device of a
given electronic device typically stores code and/or data for
execution on the set of one or more processors of that elec-
tronic device. Of course, one or more parts of an embodiment
of the invention may be implemented using different combi-
nations of software, firmware, and/or hardware. Throughout
this detailed description, for the purposes of explanation,
numerous specific details were set forth in order to provide a
thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the invention
may be practiced without some of these specific details. In
certain instances, well known structures and functions were
not described in elaborate detail in order to avoid obscuring
the subject matter of the present invention. Accordingly, the
scope and spirit of the invention should be judged in terms of
the claims which follow.

We claim:

1. A method for utilizing memory flush hints within a
computer system comprising:

flushing data from a processor cache;

determining whether memory flush hints are enabled for a

specified system address range allocated to a persistent
memory device;

if the memory flush hints are enabled for the specified

system address range then generating a memory flush
hint for a persistent memory controller of the persistent
memory device; and

using the memory flush hint to determine whether to save

the flushed data to the persistent memory device.

2. The method as in claim 1 further comprising:

saving the flushed data to the persistent memory device

according to the memory flush hint.

3. The method as in claim 1 wherein the persistent memory
device further comprises any of:

phase change memory;

universal memory;
Ge2Sb2Te5 memory;
programmable metallization cell memory;
resistive memory;
amorphous cell memory;
Ovshinsky memory;
ferroelectric memory;
ferromagnetic memory;

spin transfer torque memory;
spin tunneling memory;
magnetoresistive memory;
magnetic memory;

dielectric memory.

4. The method as in claim 1 wherein if flush hints are not
enabled for the specified address range, then saving the
flushed data to the persistent memory device.

5. The method as in claim 1 wherein the operation of
determining whether memory flush hints are enabled for a
specified system address range comprises reading an enable/
disable bit stored in a memory range register, the enable/
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disable bit having a first value if memory flush hints are
enabled and a second value if memory flush hints are not
disabled.

6. The method as in claim 1 further comprising:

using an address indirection table (AIT) to identify specific

persistent memory blocks corresponding to the specified

system address range.

7. The method as in claim 1 further comprising:

specitying amemory channel for the system address range.

8. A system comprising:

aprocessor having a cache from which data is to be flushed,
the data associated with a particular system address
range; and

a persistent memory controller to manage access to data
stored in a persistent memory device corresponding to
the particular system address range;

the processor to determine whether memory flush hints are

enabled for the specified system address range, wherein

if memory flush hints are enabled for the specified sys-
tem address range then the processor is to send a

memory flush hint to a persistent memory controller of

the persistent memory device and wherein the persistent
memory controller is to use the memory flush hint to
determine whether to save the flushed data to the persis-
tent memory device.

9. The system as in claim 8 wherein the persistent memory
further comprises any of:

phase change memory;

universal memory;

Ge2Sb2Te5 memory;

programmable metallization cell memory;

resistive memory;

amorphous cell memory;

Ovshinsky memory;

ferroelectric memory;

ferromagnetic memory;

spin transfer torque memory;

spin tunneling memory;

magnetoresistive memory;

magnetic memory;

dielectric memory.

10. The system as in claim 8 further comprising:

read and write buffers within the persistent memory con-
troller to buffer data to be stored in accordance with the
memory flush hints.

11. The system as in claim 8 wherein if flush hints are not
enabled for the specified address range, then the persistent
memory controller is to save the flushed data to the persistent
memory device.

12. The system as in claim 8 comprising:

a memory range register comprising an enable/disable bit
to indicate whether memory flush hints are enabled for a
specified system address range, the enable/disable bit
having a first value if memory flush hints are enabled and
a second value if memory flush hints are not disabled.

13. The system as in claim 12 further comprising:

an address indirection table (AIT) to identify specific per-
sistent memory blocks corresponding to the specified
system address range.

14. The system as in claim 13 further comprising:

a DIMM memory channel associated with the system
address range.

15. A system comprising:

a processor comprising a cache from which data is to be
flushed, the data associated with a particular system
address range; and
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a persistent memory controller to manage access to data
stored in a persistent memory device corresponding to
the particular system address range;

the processor to send a memory flush hint to the persistent
memory controller of the persistent memory device and
wherein the persistent memory controller is to use the
memory flush hint to determine whether to save the
flushed data to the persistent memory device based on an
address range or pages specified by an MFLUSH
instruction.

16. The system as in claim 15 wherein the persistent

memory further comprises any of:

phase change memory;

universal memory;

Ge2Sb2Te5 memory;

programmable metallization cell memory;

resistive memory;

amorphous cell memory;

Ovshinsky memory;

ferroelectric memory;

ferromagnetic memory;

spin transfer torque memory;

spin tunneling memory;

magnetoresistive memory;

magnetic memory;

dielectric memory.

17. The system as in claim 15 further comprising:

read and write buffers within the persistent memory con-
troller to buffer data to be stored in accordance with the
memory flush hint.

18. The system as in claim 15 further comprising:

a DIMM memory channel associated with the system
address range.

19. The system as in claim 15 wherein a FENCE instruc-
tion is to cause the specified memory address range or pages
to be flushed from the cache and send the memory flush hint
to the persistent memory controller.

20. A method for utilizing memory flush hints within a
computer system comprising:

issuing one or more writes to persistent memory;

issuing a memory fence instruction with the one or more
writes;

determining whether a write hits an address covered by a
memory controller range register;

if so, then issuing a write to a persistent memory controller
and waiting for an acknowledgement;

completing the memory fence instruction upon receipt of
the acknowledgement.

21. The method as in claim 20 further comprising:

continuing a normal mode of execution if the address is not
covered by a range register.

22. The method as in claim 20 wherein the persistent

memory further comprises any of:

phase change memory;
universal memory;
Ge2Sb2Te5 memory;
programmable metallization cell memory;
resistive memory;
amorphous cell memory;
Ovshinsky memory;
ferroelectric memory;
ferromagnetic memory;

spin transfer torque memory;
spin tunneling memory;
magnetoresistive memory;
magnetic memory;

dielectric memory.
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23. A system comprising:

processor means having a cache from which data is to be
flushed, the data associated with a particular system
address range; and

apersistent memory controller means to manage access to
data stored in a persistent memory device means corre-
sponding to the particular system address range;

the processor means to determine whether memory flush

hints are enabled for the specified system address range,
wherein if memory flush hints are enabled for the speci-
fied system address range then the processor means is to
send a memory flush hint to the persistent memory con-

troller means ofthe persistent memory device means and

wherein the persistent memory controller means is to
use the memory flush hint to determine whether to save
the flushed data to the persistent memory device means.

24. The system as in claim 23 wherein the persistent
memory device means further comprises any of:

phase change memory;

universal memory;

Ge2Sb2Te5 memory;

programmable metallization cell memory;

resistive memory;

amorphous cell memory;

Ovshinsky memory;

ferroelectric memory;

ferromagnetic memory;

spin transfer torque memory;

spin tunneling memory;

magnetoresistive memory;

magnetic memory;

dielectric memory.

25. The system as in claim 23 further comprising:

read and write buffer means within the pesistent memory

controller means to buffer data to be stored in accor-
dance with the memory flush hints.

26. The system as in claim 23 wherein if flush hints are not
enabled for the specified address range, then the persistent
memory controller means is to save the flushed data to the
persistent memory device means.
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27. The system as in claim 26 comprising:

memory range register means comprising an enable/dis-
able bit to indicate whether memory flush hints are
enabled for a specified system address range, the enable/
disable bit having a first value if memory flush hints are
enabled and a second value if memory flush hints are not
disabled.

28. The system as in claim 27 further comprising:

address indirection table (AIT) means to identify specific
persistent memory blocks corresponding to the specified
system address range.

29. The system as in claim 28 further comprising:

DIMM memory channel means associated with the system
address range.

30. An apparatus, comprising:

aprocessor having a cache from which data is to be flushed,
the data associated with a particular system address
range, the processor to determine whether memory flush
hints are enabled for the specified system address range,
wherein if memory flush hints are enabled for the speci-
fied system address range then the processor is to send a
memory flush hint to a persistent memory controller of
the persistent memory device for the persistent memory
controller to use to determine whether to save the flushed
data to the persistent memory device.

31. The apparatus of claim 30 wherein the persistent

memory is comprised of any of:

phase change memory;
byte-addressable persistent memory;
universal memory;

Ge2Sb2Te5 memory;
programmable metallization cell memory;
resistive memory;

amorphous cell memory;

Ovshinsky memory;

ferroelectric memory;

ferromagnetic memory;

spin transfer torque memory;

spin tunneling memory;
magnetoresistive memory;

magnetic memory;

dielectric memory.
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